YJK 隔震结构设计

应用手册

北京盈建科软件股份有限公司

2022.04

目 录

第一章 隔震结构的基本概念及原理	.1
一、引言	1
二、基本概念	3
(一)抗震结构	. 3
(二)隔震结构	. 3
(三)隔震结构体系的主要组成	4
三、隔震结构基本原理	5
(一)隔震结构的基本原理及示意图概述	5
(二)从加速度反应谱分析隔震结构的基本原理	7
(三)从能量的角度分析隔震结构的基本原理	8
四、隔震建筑的分类	9
(一)一般隔震结构	10
(二)复杂隔震结构	11
五、隔震支座分类	12
(一)叠层橡胶隔震支座	12
(二)建筑弹性滑板隔震支座	15
(三)摩擦摆隔震支座	16
六、隔震结构计算方法	18
(一)底部剪力法	18
(二)振型分解反应谱法	20
(三)时程分析法	23
第二章 隔震结构直接设计法软件实现流程	26
一、确定减震目标、建立非隔震模型	27
二、布置隔震支座、建立隔震模型	29
(一)隔震模型计算参数设置	29

(二)隔震支座参数属性定义及各参数的意义详解	35
(三)布置隔震支座	
(四)隔震设计补充定义	
(五)抗震等级及轴压比修改	
三、计算分析	46
四、结果查看	46
(一)整体指标及配筋结果查看	
(二)隔震支座验算及结果查看	
五、确定减震目标	55
六、隔震结构罕遇地震弹性时程补充计算	56
(一)地震波选择条件	
(二)工况定义(分析方法选择直接积分法)	59
(三)定义工况组合	
(四)楼层位移角	
(五)楼层剪力	
(六)隔震支座最大压应力、最大拉应力验算	61
(七)隔震支座变形验算	
(八)隔震支座抗倾覆验算、隔震支座恢复力验算	
(九)隔震支座滞回曲线查看	
(十)楼层顶点位移时程曲线	64
(十一)隔震支座耗能曲线	
七、罕遇地震作用下弹塑性时程分析	
(二)弹塑性楼层弯矩	66
(三)弹塑性层间位移角	67
(四)楼层顶点位移时程曲线	67
(五)隔震支座罕遇地震作用下滞回曲线	68

(六)罕遇地震下结构损伤云图	68
(七)隔震支座耗能曲线	
八、输出隔震设计报告	71
九、隔震结构施工图设计及基础设计	
第三章 隔震结构直接设计法算例	73
算例一:	73
一、工程概况	
二、参数设置	74
三、反应谱计算结果	
四、时程计算结果	80
算例二:	85
一、工程概况	85
二、验算隔震支座压应力	
三、隔震层抗风承载力验算	
四、设防地震(中震)分析	
五、时程分析补充验算	
六、施工与维护	
第四章 隔震结构分部设计法软件实现流程	
一、隔震结构分部设计方法及软件实现流程	
二、上部结构设计-非隔震模型《抗规》减震系数法	
(一)相关规范	112
(二)建立隔震模型与非隔震模型	
(三)用中震计算水平向减震系数β流程	114
(四)非隔震模型和隔震模型的中震反应谱计算	115
(五)非隔震模型进行中震下的弹性时程计算	116
(六)隔震模型进行设防地震下的弹性时程计算	

(七)人工对比两个模型时程分析结果得出β1	19
(八)非隔震模型输入αmaxl 的反应谱法计算12	20
三、上部结构设计-隔震模型直接计算12	24
(一)YJK 隔震模型采用直接积分法时程分析计算隔震支座的有效刚度和阻尼…12	25
(二)隔震模型反应谱法计算设计-整体计算中使用自动计算的有效刚度和阻尼.12	26
(三)YJK 对于非地震荷载工况仍采用隔震支座的线性刚度	28
(四)计算公式12	28
四、隔震层设计- FNA 法12	29
(一)隔震支座验算	29
(二)支墩设计1	38
五、隔震层设计-直接积分法	41
(一)隔震支座验算	41
(二)隔震层支墩、支柱的计算	46
六、下部结构设计14	48
(一)相关规范	48
(二)下部结构设计过程—隔震模型	49
(三)下部结构设计过程—非隔震模型	56
(四)大震弹塑性计算分析	61
七、基础设计-非隔震模型10	65
八、隔震支座参数属性及设置方式详解10	67
1、隔震层的建模方法	67
2、单点约束的应用	70
3、隔震参数输入及各参数的意义	71
4、隔震参数输入举例及注意事项1	72
5、在其他软件中等效拉压刚度不一致的方法	74
九、时程分析法计算计算隔震结构技术原理1	75

1、3	地震波选取	175
2、/	快速非线性(FNA)方法	178
3、	直接积分法	179
十、丰	F隔震结构的上部结构分析计算要点	180
1、2	对非隔震结构按照αmaxl 进行结构计算	180
2、.	上部结构最小楼层剪重比控制与调整	181
3、	竖向地震	182
4、.	上部结构的抗震措施	183
5、.	上部结构的抗倾覆验算	184
6、	高层隔震结构	184
第五章	隔震结构分部设计法算例	185
ETAB	S 算例 1—云县图书馆	185
—,	工程概况	185
二、	计算模型	185
三、	YJK 计算模型	189
四、	隔震结构模态周期计算结果对比	190
五、	ETABS 和 YJK 快速非线性(FNA)时程分析计算结果对比	192
$\frac{1}{1}$	预置工况组合下隔震支座的拉压应力输出	196
七、	隔震支座的滞回曲线输出	197
八、	结论	199
ETAB	S 算例 2—东川紫荆家园	200
—,	工程概况	200
二、	计算模型	200
三、	YJK 计算模型	204
四、	隔震结构模态周期计算结果对比	205
五、	时程分析计算结果对比	206

六、结论	
YJK 算例 3—27328	
一、工程概况	
二、YJK 计算模型	
三、ETABS 计算模型	
四、YJK 与 ETABS 结果对比	
YJK 算例 4—23811	212
一、工程概况	
二、YJK 计算模型	
三、ETABS 计算模型	
四、YJK 与 ETABS 结果对比	
分部设计法常见问题	
一、建模	
二、前处理设置	
三、计算及计算结果	

第一章 隔震结构的基本概念及原理

一、引言

地震灾害是一种突发性的自然灾害,严重威胁着人民的生命和财产安全,人类在适 应和改造自然、生存发展的过程中,不断地探寻抵御地震的方法,但是由于种种原因, 一直没有形成一套系统的成熟的抗震设计方法,随着人类不断地进步,科技水平的发展 以及实践能力的提高,人们对地震动特性和结构动力特性的理解逐渐加深,在各国结构 抗震方面专家和学者的共同努力下,结构抗震设计理论从一开始的静力理论阶段、反应 谱理论阶段、动力理论阶段发展到现在的基于结构性能的抗震设计理论阶段。但是这些 理论方法的思想都是将结构设计成为"抗震"结构,即通过增加结构构件截面和强度来 抵御地震作用,多次地震震害表明,这样设计的结构虽然能够在大震中不至于倒塌,但 建筑内部设备和装修的破坏所造成的损失往往也是巨大的,因此对建筑内部的设备,设 施有更高保护要求的建筑,仅采用传统的抗震设计方法有时难以满足需求,且其花费的 代价也是人们不可接受的。为了解决这一难题,结构工程界一直都在寻找一种新的结构 体系来解决结构的耐震问题,近几十年来在全世界以及我国迅速发展起来的工程结构减 震体系,就是一种更加合理、有效、安全、经济的结构耐震方法,包括隔震、消能减震 等技术,它不是采用提高结构刚度的传统抗震方法来提高结构抗震能力,而是通过调整 或改变结构动力参数的途径,以明显衰减结构的地震反应,有效地保护结构及其内部设 施在强震中的安全,在很多情况下,它比传统抗震方法更为有效、合理和经济,是一种 有着广阔应用前景的新技术。在各种减震技术体系中,发展最成熟,应用最广泛且减震 效果最好的就是隔震结构技术。

我国幅员辽阔,高烈度地区较多,许多地区经常发生地震,地震灾害的教训相当惨 痛。图 1.1 是发生在我国境内的主要大地震。自 2008 年以来,我国接连发生汶川、玉树、 芦山等多次大地震,2011 年以来国外的大地震也是不断,智利、日本、尼泊尔等地区发

1

生了 8 级以上的特大地震,这些事例无一不在告诉我们,地球已经进入又一个地震活跃 期。

我国在 2001 年颁布的《建筑抗震设计规范》(GB 50011-2001),第一次将隔震设 计的内容列入其中,隔震层的位置仅限于基础与上部结构之间;2010 年颁布的《建筑抗 震设计规范》(GB 50011-2010)取消了对隔震设计的结构类型、非隔震时结构基本周 期小于 1s 和高度不超过 40m 三个主要限制,还取消了隔震建筑主要应用于 8、9 度区的 条款,并将隔震技术由基础隔震扩展到层间隔震;2021 年颁布的《建筑隔震设计标准》 (GB/T 51408-2021)进一步放宽了隔震建筑的适用范围,取消了对于结构高宽比限值的 要求,直接按照隔震支座拉力小于 1Mpa 控制隔震结构的抗倾覆问题。同时隔标还新增 了大跨结构、砌体结构及底框抗震墙结构、核电厂建筑结构隔震设计的具体规定,增加 了既有建筑与历史建筑隔震加固设计、村镇居民低矮房屋简易隔震设计等内容。

国家及地方有关政府部门也相继发布了一些关于减隔震设计方面的文件来促进减隔 震技术的推广及应用。2016 年发布的《防震减灾规划(2016-2020 年)》中明确提出推 广减隔震等新技术以提升地震灾害防御能力,各地方政府也有相关政策要求。其中《新 疆维吾尔自治区实施国家 2010(建筑结构)系列规范细则》3.0.2 明确给出了减隔震具 体应用范围:1.位于抗震设防烈度8度(含8度)以上地震高烈度区、地震重点监视防御区 域或地震灾后重建阶段的新建3层(含3层)以上,且单体建筑面积大于2000平方米的幼 儿园、中小学、医院等人员密集公共建筑应采用减隔震技术进行设计;2.抗震设防烈度8 度(含8度)以上地区,凡具备条件的房屋建筑工程和城镇市政公用设施等生命线工程应采 用减隔震技术;3.鼓励重点设防类、特殊设防类建筑和位于抗震设防烈度8度(含8度)以 上地震高烈度区的其他建筑采用减隔震技术。对抗震安全性或使用功能有较高需求的标 准设防类建筑提倡采用减隔震技术。2021年国务院颁发的《建筑工程抗震管理条例》第 十六条规定:位于高烈度设防地区、地震重点监视防御区的新建学校、幼儿园、医院、 养老机构、儿童福利机构、应急指挥中心、应急避难场所、广播电视等建筑应当按照国 家有关规定采用隔震减震等技术,保证发生本区域设防地震时能够满足正常使用要求。 同时鼓励在除前款规定以外的建设工程中采用隔震减震等技术,提高抗震性能。

2

图 1.1 我国历史中遭遇的大地震

二、基本概念

(一)抗震结构

现在各国普遍采用的是抗震设计理论。地震时建筑物受到的地震作用由底向上逐渐 放大,从而引起结构构件的破坏。抗震设计思想是抵御地震作用立足于"抗",即依靠 建筑物本身的结构构件的强度和塑性变形能力,来抵抗地震作用和吸收地震能量。

特点:在强震作用下,会产生很大的变形,造成各种破坏,甚至倒塌。所以这种依 靠结构构件发生弹塑性变形来消耗地震能量保证结构大震安全的延性结构体系,已不能 满足实际需要。为了保证建筑物的安全,必然加大结构构件的设计强度,耗材多,而地 震力是一种惯性力,建筑物的构件断面大,所用材料多,质量大,其受到的地震作用也 相应增大,想要在经济和安全之间找到一个平衡点往往比较困难。

(二) 隔震结构

是在建筑的某一层(基础顶、地下室顶或裙房顶部)增设由隔震橡胶支座和阻尼器 等组成的隔震层,用以改变结构体系的振动特性,延长结构自振周期,增大结构阻尼, 通过隔震层的大变形耗散掉输入结构的大部分地震作用,有效地降低了上部结构的地震 反应,大大地减小了层间剪力与层间相对变形,从而达到预期防震要求。隔震技术的重 点是"隔离地震"。图 1.2.1 分别是抗震结构与隔震结构遭遇大地震时的区别。

隔震结构

图 1.2.1 抗震结构与隔震结构地震时的振动区别

与抗震结构相比,隔震结构在遭遇大地震时表现良好,隔震建筑的变形主要集中在 隔震层,隔震层以上结构的变形非常小,接近于刚体的平动,住在房屋中的人们似乎感 受不到房屋的振动,房屋结构及内部的装修、设备、仪器丝毫无损,其隔震效果令人惊 叹。但是需要注意的是目前建筑隔震只能隔离水平地震作用。对竖向地震还没有很好的 办法,因此隔震建筑竖向地震动与非隔震建筑基本相同,特别对于高烈度地区,隔震建 筑设计中考虑的竖向地震作用比传统抗震建筑大得多。

(三) 隔震结构体系的主要组成

为了降低地震响应,在结构中设置隔震层而实现隔震功能的建筑,隔震层一般是在 基础和上部结构之间来设置隔震支座和耗能元件,也有在结构中间层设置隔震层的。由 于隔震层的存在将整个结构分为上部结构、隔震层和下部结构三部分。如图 1.2.2 所示, 地震能量经由下部结构传到隔震层,大部分被隔震层的隔震装置吸收,仅有少部分传到

上部结构,从而大大减轻地震作用,提高隔震建筑的安全性。

图 1.2.2 隔震结构体系组成

三、隔震结构基本原理

(一)隔震结构的基本原理及示意图概述

地震波通过地基基础传至建筑物,引起结构的振动,如果在建筑与地基基础之间设 置一层特殊的隔震层,阻隔地震波向上部建筑传递,就可以有效降低建筑的晃动。

隔震结构最理想的状态是能将地震完全隔离,如果能使结构漂浮在空中,与地面完 全脱开,如图 1.3.1a 所示,则再剧烈的地震对建筑也难以造成影响,但是人类目前的技 术不可能实现;如果在建筑物底部加上一些滚动的轮子让其可以自由滚动,如图 1.3.1b 所示,这样在技术上是可以实现的,且减震效果也是非常的不错,但是结构的位移过大 不可控制,在现实中也是不可选的。如果在图 1.3.1b 的基础上对建筑物四周增加一些刚 度合适的弹簧与固定的物体连接如图 1.3.1c 所示,这样减震效果也不错,结构位移也可 控制,但是地震过后引起的建筑物振动衰减缓慢,需要较长的时间才能恢复到静止状态, 也不是最理想的减震方案,为了解决这一问题人们想到了一个完美的解决办法,即在图 1.3.1c 的侧向弹簧中增加部分阻尼器,如图 1.3.1d 所示,这样既可以控制结构的位移, 地震过后结构的振动也可以迅速的衰减下来,且减震效果好,实际项目中可以采用。

图 1.3.1 隔震结构的几种基本原理示意图

图 1.3.2 为结构的加速度反应谱和结构位移反应谱曲线, 三条曲线分别表示结构具有 不同大小的阳尼,从图 1.3.2 可知,随着结构基本周期的增加,结构加速度反应减小,结 构位移反应增大,随着结构阻尼的增加,结构加速度和结构位移同时减小,对于一个隔 震结构,要想减震效果最佳,又不会使结构位移过大,就需要所选用的隔震支座具有合 适的刚度和阻尼。

结构响应除了与结构的自振周期和阻尼有关外,还与结构所处的场地类别有关,图 1.3.3 表示了结构在不同场地类别下的反应谱曲线,其中一类为岩石等坚硬场地土,二类 为中等坚硬场地土,三类为软弱场地土。这主要是由于土层会使一些与土层固有周期一 致的某些频率波群放大通过,而将另一些与土层固有周期不一致的某些频率波群缩小或 过滤掉。由于表层土的滤波作用,使坚硬场地的地震动以短周期为主,而软弱场地土的 地震动则以长周期为主,对于表层土的放大作用,使坚硬场地土的地震加速度幅值在短 周期范围内局部增大,同理使软弱场地土的地震动加速度幅值在长周期范围内局部增大, 由于隔震建筑的周期一般都比较长,对于长周期的隔震结构场地土越软弱,地震作用越 大,隔震效果越差,所以新隔标 3.2.2 条规定隔震建筑的场地宜为 I、II、III类,当场地 土为IV类时,应采取有效措施。

图 1.3.3 不同场地类别的地震作用反应谱曲线

(二)从加速度反应谱分析隔震结构的基本原理

由《建筑抗震设计规范》的地震作用计算公式可知,要减小结构的地震作用有两种 途径,减小结构的质量或减小水平地震影响系数,对于一个确定的结构方案通过减小结 构的质量来减小地震作用一般幅度不会太大,隔震采取的主要是通过减小水平地震影响 系数实现减小输入结构的地震作用,由《建筑隔震设计标准》的地震影响系数曲线(图 1.3.4)可知,要减小水平地震影响系数可以有以下措施:1)减小水平地震影响系数最大 值αmax;2)减小阻尼调整系数(增大结构阻尼比ξ);3)增大结构的基本周期;4)减 小特征周期 Tg。水平地震影响系数最大值与设防烈度有关,场地土的特征周期与场地类 别和设计地震分组有关,实际项目设计中可行的措施只有增大结构的阻尼和延长结构的 自振周期。隔震结构中布置的隔震垫刚好具备增大结构的阻尼比和延长结构的自振周期 的效果,从而来减小隔震层以上的结构水平地震作用。

图 1.3.4 水平地震影响系数曲线

注: α 一地震影响系数; α_{max} 一地震影响系数最大值;T一隔震结构自振周期; T_g 一特征周期; γ 一曲线下降段的衰减指数; η 一阻尼调整系数

$$\eta = 1 + \frac{0.05 - \zeta}{0.08 + 1.6\zeta}$$

ξ: 阻尼比

(三)从能量的角度分析隔震结构的基本原理

1956 年 Housner 提出能量法概念,用地震能量在结构中的传递、吸收与转化情况 来反映结构破坏的情况,从能量角度而言,减小地震破坏的基本原则主要是以适当的方 式减小或者消耗地震输入的能量。

传统的抗震结构在任意时刻的能量方程:

$$E_{\rm im} = E_V + E_C + E_{\rm k} + E_{\rm h}$$

耗能减震结构在任意时刻的能量方程:

 $E'_{\rm im} = E'_V + E'_C + E'_K + E'_h + E_d$

 E_{im} 、 E'_{im} : 地震过程中输入传统抗震结构、耗能减震结构体系的总能量 E_V 、 E'_V : 传统抗震结构、耗能减震结构体系的动能 E_C 、 E'_C : 传统抗震结构、耗能减震结构体系的粘滞阻尼耗能 E_K 、 E'_K : 传统抗震结构、耗能减震结构体系的弹性应变能 E_h 、 E'_h : 传统抗震结构、耗能减震结构体系的滞回耗能 E_d : 耗能(阻尼)装置或耗能元件耗散或吸收的能量

 $E_{\rm V}$ 、 $E_{\rm V}$ 及 $E_{\rm K}$ 、 $E_{\rm K}$ 仅使能量转换而不耗散能量, $E_{\rm C}$ 、 $E_{\rm C}$ 仅占总能量的很小部 分(只占 5%左右),可以忽略不计。故在传统的抗震结构中,主要依靠 $E_{\rm h}$,耗散输入结构 的地震能量,但因结构构件在利用其自身弹塑性变形耗散地震能量的同时,构件本身将 遭到损伤甚至破坏,某一结构构件耗能越多,则其破坏程度越严重。而在耗能减震结构 体系中,耗能(阻尼)装置(或元件)在主体结构进入非弹性状态前率先进入耗能工作状态, 充分发挥耗能作用,从而减小结构本身需耗散的能量,这意味着结构在地震作用下的反 应将大大减少,从而有效地保护主体结构的安全性,避免或延缓其遭受损伤或破坏。

结构在地震作用过程中所作的功分为 4 项,一部分以动能和弹性应变能方式储存, 结构耗散的能量为滞回耗能与阻尼耗能之和,若结构的滞回耗能累计超过破坏界限时, 结构会出现破坏。从上式可知,要减小结构的滞回耗能,可通过三种方式: (1)增加动 能和弹性应变能; (2)增加阻尼耗能; (3)减少地震输入能。要增加动能和弹性应变 能,需增大结构的刚度,即增加结构的构件尺寸或者增加材料的强度等级,这种方法很 不经济。而增加结构的阻尼耗能就是在结构中增加一些阻尼比较大的耗能元件,如阻尼 器,隔震支座等,利用这些耗能元件的阻尼及滞回耗能来减小主体结构的滞回耗能,隔 震则是通过减小地震输入能并增加阻尼耗能来保护主体结构不产生破坏。

四、隔震建筑的分类

根据结构复杂程度区分为一般隔震结构与复杂隔震结构。

(一) 一般隔震结构

一般隔震结构是:较规则的多层结构的基础隔震或层间隔震(非悬臂柱顶部)处隔 震的结构,其中基础隔震(图 1.4.1)是最早研究并得到广泛应用的隔震类型,基础隔震 技术可以最大限度的隔离地震能量,具有构造简单,受力特征明确,技术相对成熟等特 点,也是应用最多的一种隔震结构。层间隔震(图 1.4.2)就是指隔震层设置在结构中间 层的一种隔震技术,层间隔震技术是在基础隔震技术上发展起来的一种新型隔震结构形 式,是基础隔震的拓展,可根据建筑结构自身的特点,灵活设置隔震层位置。

图 1.4.1 基础隔震结构示例

图 1.4.2 层间隔震示例

(二)复杂隔震结构

复杂隔震结构是指结构类型稍复杂或隔震位置特殊的建筑,常见的主要有以下类型: 1)不规则结构隔震:

2) 高层结构隔震:

3) 多塔隔震:

五、隔震支座分类

常用的建筑隔震支座有叠层橡胶隔震支座、摩擦摆隔震支座和弹性滑板隔震支座。

(一)叠层橡胶隔震支座

叠层橡胶支座由多层橡胶和多层钢板或其它材料叠合经高温硫化粘结而成。叠层橡 胶支座受压时,橡胶会向外侧变形,但由于受到内部钢板的约束,以及考虑到橡胶材料 的非压缩性(泊松比约为 0.5),橡胶层中心会形成三向受压状态,其压缩时的竖向变形 量很小,而在叠层橡胶支座剪切变形时,钢板不会约束剪切变形,橡胶片可以发挥自身 柔软的水平特性,从而通过自身较大的水平变形隔断地震作用。

叠层橡胶隔震支座是目前技术成熟、应用较多的一种隔震装置。隔震橡胶支座通常 可分为天然橡胶隔震支座(LNR)、铅芯隔震橡胶支座(LRB)和高阻尼隔震橡胶支座(HDR) 三大类。隔震橡胶支座由连接件和主体两部分组成。其中主体就是由多层钢板和橡胶片 交替叠置而成,连接件包括法兰板和预埋件,其作用主要是把隔震支座主体和建筑的上 部结构、下部结构连接起来。

普通橡胶隔震支座(LNR):普通橡胶支座由天然橡胶片或氯丁二烯橡胶片与钢板叠合制成,如图 1.5.1 所示。由于其具有良好的线弹性性能,不仅能显著降低结构的地震作用,还能抑止结构的高阶反应。普通橡胶支座不提供阻尼,罕遇地震时隔震支座位移较大, 实际工程中须与其它阻尼器联合使用。

图 1.5.2 天然橡胶支座计算模型

高阻尼橡胶隔震支座(HDR):高阻尼橡胶隔震支座采用高阻尼橡胶材料制造,构造 与普通橡胶支座相同,如图 1.5.3 所示,高阻尼橡胶隔震支座兼有普通橡胶隔震支座与阻 尼器的作用,支座提供的阻尼比可达 25%,能在隔震体系中单独使用。

图 1.5.3 高阻尼橡胶隔震支座

图 1.5.4 高阻尼橡胶隔震支座计算模型

铅芯橡胶隔震支座(LRB):在普通橡胶支座中间开孔,灌入铅,如图 1.5.5 所示,便 形成铅芯橡胶隔震支座。铅芯橡胶隔震支座不仅有较高的阻尼比,还有一定的初始刚度, 可以提高建筑的抗风能力,铅芯橡胶隔震支座兼有普通橡胶隔震支座和阻尼器的作用。

图 1.5.5 铅芯橡胶隔震支座

竖向计算模型

水平向计算模型

图 1.5.6 铅芯橡胶隔震支座计算模型

(二)建筑弹性滑板隔震支座

滑板隔震通过在上部结构与基础之间设置滑移层,使得基础只能向上部结构传递有 限而衡定的地震作用力,达到保护上部结构的目的。滑板隔震支座具有竖向承载力高、 水平变形大,可控摩檫力等特性,因此滑板隔震支座可以避开任何地震波产生的共振效 应,而且滑移产生的摩檫力做功能有效消耗地震的输入能量,增加系统阻尼,进而降低 上部结构地震反应。但是滑板隔震支座不具备自复位功能,需要配合叠层橡胶支座适用。 目前最常用的滑板隔震支座主要有弹性滑板隔震支座,具体设计可以参考《橡胶支座第 五部分建筑隔震弹性滑板座》,滑板隔震支座示意图如图 1.5.7 所示,荷载—位移滞回曲 线如图 1.5.8 所示。

图 1.5.7 建筑滑板隔震支座

图 1.5.8 建筑滑板隔震支座荷载—位移滞回曲线

(三) 摩擦摆隔震支座

摩擦摆隔震支座是另一种有效的摩擦滑移隔震支座,通过球面摆动延长结构振动周 期和滑动截面摩擦消耗地震能量实现隔震功能的隔震支座,由于其具有更高的承载力、 更大位移能力和更好的耐久性,还具有良好的稳定性自复位功能和抗平扭能力,在老化、 低温、高温扭转等条件下,摩擦摆隔震支座具有明显的优势。摩擦摆隔震支座如图 1.5.9 所示。

图 1.5.9 摩擦摆隔震支座

摩擦摆隔震支座按照滑动摩擦面的结构形式,可将摩擦摆隔震支座分为两类, I型 为单主滑动摩擦面型,如图1.5.10a、1.5.10b所示, II型为双主滑动摩擦面型,如图1.5.10c 所示。

荷载—位移滞回曲线如图 1.5.11 所示。

图 1.5.10 摩擦摆隔震支座类型

图 1.5.11 摩擦摆隔震支座荷载—位移滞回曲线

六、隔震结构计算方法

隔标 4.1.3 条规定: 隔震结构地震作用计算, 除特殊要求外, 可采用下列方法:

1.房屋高度不超过 24m,上部结构以剪切变形为主,且质量和刚度沿高度分布比较 均匀的隔震建筑,可采用底部剪力法;

2.除本条款第1款外的隔震结构应采用振型分解反应谱法(这里所说的反应谱指的 是复振型分解反应谱法):

3.对于房屋高度大于 60m 的隔震建筑,不规则的建筑,或隔震层隔震支座,阻尼装 置及其他装置的组合复杂的隔震建筑,尚应采用时程分析法进行补充计算。每条地震加 速度时程曲线计算所得结构底部剪力不应小于振型分解反应谱法计算结果的 65%,多条 时程曲线计算所得的结构底部剪力的平均值不应小于振型分解反应谱法的 80%。

(一)底部剪力法

采用底部剪力法时,各楼层可取一个自由度,结构的水平地震作用标准值,应按下 列公式确定:

$$F_{Ek} = \alpha_1 G_{eq} \quad (1.6.1 - 1)$$

$$F_i = \frac{G_i H_i}{\sum_{j=1}^{n} G_j H_j} F_{Ek} (1 - \delta_n) \quad (1.6.1 - 2)$$

$$\Delta F_{\rm n} = \delta_{\rm n} F_{E\rm k} \quad (1.6.1 - 3)$$

图 1.6.1 结构水平地震作用计算简图

式中:

 F_{Fk} : 结构总水平地震作用标准值;

 $G_{\rm eq}$:结构等效总重力荷载,单质点应取总重力荷载代表值,多质点可取总重力荷载代表值的 85%;

F_i: 质点 i 的水平地震作用标准值;

*G*_i、*G*_j:分别为集中于质点 i、j 的重力荷载代表值,应按抗震规范第 5.1.3 条确定;

 *H*_i、*H*_i:分别为质点 i、j 的计算高度;

 δ_{n} :顶部附加地震作用系数,多层钢筋混凝土和钢结构房屋可按表 1.6.1 采用,其它房 屋可采用 0.0

ΔF_n:顶部附加水平地震作用

V: 地震作用下各楼层的水平地震剪力

表 1.6.1 顶部附加地震作用系数

T_g (s)	$T_1 > 1.4T_g$	$T_1 \leqslant 1.4T_g$
$T_{g} \leqslant 0.35$	$0.08T_1 + 0.07$	
0. 35 $< T_{g} \le 0.55$	$0.08T_1+0.01$	0.0
<i>T</i> _g >0.55	$0.08T_1 - 0.02$	

注: T1为结构基本自振周期。

底部剪力法主要计算步骤:

- (1) 计算结构等效总重力荷载代表值
- (2) 计算水平地震影响系数
- (3) 计算结构总的水平地震作用标准值
- (4) 计算顶部附加水平地震作用
- (5) 计算各层的水平地震作用
- (6) 计算各层的层间剪力

(二)振型分解反应谱法

采用振型分解反应谱法时,应将下部结构、隔震层及上部结构进行整体分析,其中 隔震层的非线性可按等效线性化的迭代方式考虑,并应计算其地震作用和作用效应,且 应符合下列规定:

1、对不进行扭转耦联计算的隔震结构,应按下列规定计算其地震作用和作用效应:

1)结构 j 振型 i 质点的水平地震作用标准值应按下式确定:

 $F_{ii} = \alpha_i \gamma_i X_{ii} G_i$ (i=1, 2,n;j=1, 2....n) (1.6.2–1)

式中:

 F_{ii} : j 振型 i 质点的水平地震作用标准值(N);

 α_i : j 振型周期的地震影响系数,应按隔标第 4.2.1 条、第 4.2.2 条确定:

γ_i: j 振型的参与系数,应按隔标附录 B 中式(B.0.1-2)计算:

 X_{ii} : j 振型质点的水平相对位移(mm),应按隔标附录 B 中式(B.0.1-1)计算,

2)当相邻振型的周期比小于 0.85 时,水平地震作用标准值的效应可按下式确定:

 $S_{Ek} = \sqrt{\sum (1 + \tau_j^2) S_j^2} \quad (1.6.2 - 2)$

式中:

 S_{FK} :水平地震作用标准值的效应(N);

 S_i : 第j 振型水平地震作用标准值的效应(N);

*τ*_j: 第 j 振型水平地震作用效应非比例阻尼影响系数,按隔标附录 B 中式(B.0.2-1)
 计算。

2、考虑扭转耦联影响时,各楼层可取两个正交的水平位移和一个转角共三个自由度, 并应按下列要求计算隔震结构的地震作用和作用效应:

1)结构 j 振型 i 质点的水平地震作用标准值应按下式确定:

$$F_{X_{ji}} = \alpha_{j} \gamma_{ij} X_{ji} G_{i} \quad (1.6.2 - 3)$$

$$F_{\rm Yji} = \alpha_{\rm j} \gamma_{\rm jj} Y_{\rm ji} G_{\rm i} \quad (1.6.2 - 4)$$

$$F_{\rm rji} = \alpha_{\rm j} \gamma_{\rm rj} r_{\rm i}^2 \varphi_{\rm ji} G_{\rm i} \ (1.6.2 - 5)$$

式中:

 $F_{x_{ji}}$ 、 $F_{y_{ji}}$ 、 $F_{r_{ji}}$: 分别为 j 振型 i 质点的 x 方向、y 方向和转角方向的水平地震作用标准值(N);

X_{ii}、 Y_{ii}: 分别为 j 振型 i 质点在 x、y 方向的水平相对位移(mm);

 φ_{ii} : j 振型 i 质点的相对扭转转角(°);

 r_i : i 质点的转动半径,可取 i 质点绕质心的转动惯量除以该质点质量的商的正二次 方根;

 γ_{i} : 计人扭转的 j 振型的参与系数。

2)单向水平地震作用下的效应,可按下列公式确定:

$$S_{Ek} = \sqrt{\sum_{j=1}^{n} \sum_{i=k}^{n} \rho_{jk} S_{j} S_{k}} \quad (1.6.2 - 6)$$

$$\rho_{jk} = \frac{8\sqrt{\xi_{j} \xi_{k}} (\xi_{j} + \lambda_{T} \xi_{k}) \lambda_{T}^{1.5}}{(1 - \lambda_{T}^{2})^{2} + 4\xi_{j} \xi_{k} (1 + \lambda_{T}^{2}) \lambda_{T} + 4(\xi_{j}^{2} + \xi_{k}^{2}) \lambda_{T}^{2}} \left(1 + \frac{-1 + \lambda_{T}^{2}}{\xi_{j} + \xi_{k} \lambda_{T}} \tau_{j} + \frac{\xi_{k} + \xi_{j} \lambda_{T}}{\xi_{j} + \xi_{k} \lambda_{T}} \tau_{k} \tau_{j}\right)$$

(1.6.2-7)

式中:

 S_{Ek} . 地震作用标准值的组合效应(N);

 S_j 、 S_k :分别为 j、k 振型水平地震作用标准值的效应(N),可根据振型参与质量系数确定参与计算的振型数;

 ρ_{ik} : j 振型与 k 振型的耦联系数;

 ξ_i 、 ξ_k : 分别为 j、k 振型的阻尼比;

 λ_r : k 振型与 j 振型的自振周期比。

3) 双向水平地震作用下的效应可按下列公式中的较大值确定:

$$S_{Ek} = \sqrt{S_x^2 + (0.85S_y^2)^2} \quad (1.6.2 - 8)$$
$$S_{Ek} = \sqrt{S_y^2 + (0.85S_x^2)^2} \quad (1.6.2 - 9)$$

式中: S_x 、 S_y 分别为 x 向、y 向单向水平地震作用上式 (1.6.2—6) 计算的地震效应 (N)。

3、隔震层阻尼比小于 10%。结构高度不超过 24m、质量和刚度沿高度分布比较均 匀且隔震支座类型单一的隔震建筑,可按隔标附录 B 第 B.0.3 条规定执行。

(三) 时程分析法

YJK 软件同时支持快速非线性(FNA)方法和直接积分法,其中新版弹性时程分析将 振型叠加法和直接积分法整合在一起,方便了用户进行操作,并且丰富了输出结果,一 些之前只在一种算法下才输出的结果现在两种算法都输出了,如能量曲线、隔震送审报 告等等。

1. 快速非线性(FNA)方法

快速非线性(Fast Nonlinear Analysis,简称 FNA)方法,是一种非线性的模态叠加 方法,这种方法能满足基本力学方程(平衡、力—变形和协调性)的要求,原理是将结 构的线性部分和非线性部分隔离开,通过非线性力迭代的方式对结构进行计算。在时间 t 处,结构的计算机模型精确的力平衡方程矩阵可表示为下式:

 $MU(t) + CU(t) + KU(t) + R_{NI}(t) = R$ (t) (1.6.3-1)

其中 M、C 与 K 分别是质量矩阵、比列阻尼矩阵和刚度矩阵。这三个方阵的大小等于位置未知节点位移 Nd 的总数,弹性刚度矩阵 K 忽略了非线性单元的刚度、位移和外部荷载。时间相关的向量 $U(t) \times U(t) \times U(t) = R(t)$ 分别是节点加速度、速度、位移和外部荷载。而 $R_{NL}(t)$ 来源于非线性单元力总和的整体节点力向量。是通过在每个时间点上的迭代计算出来的。

如果需要考虑部分连接单元的非线性行为,可在非线性连接单元位置添加任意的"有效弹性单元",如在方程(1.6.3-1)的两边加上这些有效力*K*_{eU}(t),则精确的平衡方程可改写为:

 $MU(t) + CU(t) + \bar{K}U(t) = \bar{R}(t)$ (1.6.3-2)

其中 \bar{K} 为弹性刚度矩阵, $\bar{K} = K + K_c$,并且是已知的。

 $\bar{R}(t)$ 为有效外部荷载, $\bar{R}(t) = R(t) - R_{NI}(t) + K_{eII}(t)$, 需要通过迭代确定。

下面对其优缺点进行简单概括。

优点:其计算速度较之非线性直接积分法要快很多,适用于计算具有有限数量的非 线性构件、仅存在局部非线性行为的结构。因而在进行减震隔震计算时,若只考虑结构 中隔震支座、阻尼器、屈曲约束支撑等构件的非线性行为,而结构其余构件均考虑为线 性构件时,该方法较为实用。

缺点:由于该方法的计算依赖于结构的模态结果,所以非线性构件的线性部分的有 效刚度填写的准确与否,对计算结果将会有一定的影响。对于减震结构,由于隔震支座 的影响范围有限,使用 FNA 方法一般都可以得到较为准确的结果。但对于隔震结构而言, 由于隔震支座的加入,往往会较大的改变结构底部的力学性能,对结构的模态周期影响 很大,由其产生的非线性亦会影响结构的整体,从而不能严格满足"结构仅有局部非线 性"这一条。此时,若想用 FNA 法得到较为准确的结果,则需要将隔震支座的有效刚度 填写准确。若不能确定有效刚度,也可采用直接积分法对隔震层的层剪力进行校核。一 般而言,若 FNA 法计算的隔震层剪力偏小,则说明隔震支座的有效刚度值偏小;反之偏 大。

2. 直接积分法

直接积分法是最常用的结构动力响应分析方法,是对动力学平衡方程直接进行数值 积分来求解。求解的方法基本上可归为两类:显示积分法和隐式积分法。关于直接积分 法的基本原理和详细计算过程可参考 YJK 软件的帮助文档和有关详细的结构动力学书籍。 此处不再过多叙述。

盈建科软件同时支持显示积分法(Y-Paco 软件)和隐式积分法(YJK 弹性时程模块 下的直接积分法和 YJK-EP 动力弹塑性时程分析模块),显式直接积分法 Y-Paco 软件采 用中心差分方法,关于显示直接积分法的中心差分方法可以查看 Y-Paco 分析手册,其中 隐式直接积分法 YJK 软件采用 Newmark 方法,该方法是传统的动力分析隐式方法,其 原理这里也不做过多说明,想深入学习的设计师可以查看 YJK-EP 动力弹塑性分析手册, 下面对 Newmark 优缺点进行简单概括。

优点:该方法对非线性动力分析非常有效,无论是局部非线性或是整体非线性, Newmark 方法均能得到准确的结果。在盈建科弹性时程模块的直接积分法中,只考虑隔 震支座、阻尼器、屈曲约束支撑等特殊构件的非线性行为,计算过程中完全不依赖其线 性部分的有效刚度,只采用非线性参数进行计算,所以使用此方法计算时,不必考虑填

24

入的有效刚度是否准确。需要补充说明的是,直接积分法本身与振型(模态)毫无关联, 但由于隐式直接节分法一般采用瑞利阻尼,而瑞利阻尼系数的计算需要输入两个周期以 及对应的阻尼比,又由于周期分析是基于有效刚度的,所以有效刚度会间接的影响直接 积分法默认的瑞利阻尼,而瑞利阻尼作为直接积分法的阻尼项,会影响直接积分法结果。 当然,若用户自行确定瑞利阻尼,则也可与有效刚度完全无关。

缺点:该方法在每个时间步进行计算时,都需要重新组装总体刚度矩阵,重新对刚 度矩阵进行分解,因而计算速度较之快速非线性法要慢很多。

注:从1.8.0版本开始,直接积分法模块已经加入平衡迭代。

第二章 隔震结构直接设计法软件实现流程

依据《建筑隔震设计标准》(GB/T 51408-2021)的思想,隔震结构设计不再采用以前 抗震规范的分部设计方法,该标准确立了以"直接设计法"、"复振型分解反应谱法" 和新一代隔震设计反应谱为代表性内容的方法体系,在抗震设防目标问题上,将原有的 "小震不坏、中震可修、大震不倒"提升为"中震不坏、大震可修、巨震不倒",采用 中震进行内力计算和构件设计,并进一步引入性能化设计思想。YJK 软件 4.0 隔震结构直 接设计法的主要流程如图 2.0.1 所示。

图 2.0.1 直接分析法流程

下面以一个实例介绍隔震结构直接设计法在 YJK 软件中的实现流程。

项目概况:本项目地上5层,无地下室,1~3层层高3.6m,4~5层层高5.1m,房 屋总高度21m,采用基础隔震,基本风压0.6kN/m2(50年)基本雪压0.9kN/m2(50 年),抗震设防烈度8度(0.2g),地震分组二组,场地类别二类,建筑抗震设防类别乙类, 计算模型如下图2.0.2所示。

图 2.0.2 结构分析模型

一、确定减震目标、建立非隔震模型

确定减震目标(按降低一度抗震措施),建立非隔震模型(含下支墩层、上支墩层) 其中上支墩柱底设置为铰接,按减震目标降低一度抗震措施的要求进行结构计算分析(本 项目上部结构的抗震等级初步定义为二级,隔震支座以下的下支墩的抗震等级定义为一 级)。计算参数如"图 2.1.1"所示,柱底铰接设置如"图 2.1.2"所示。

上支墩层的基本要求:上支墩层顶板应有足够的刚度和承载力,楼盖宜采用梁板式 楼盖,楼板厚度不应小于 160mm,楼盖的刚度和承载力宜大于一般楼盖的刚度和承载力。 上支墩层层高不宜太高,只需满足日后隔震层的维护和检修所需的操作空间即可,一般 要求梁底到地面的净高不应小于 600mm,实际项目中通常取值 800mm 左右,这样上支 墩层层高至少为"梁高+800"。上支墩柱截面尺寸取值一般每边大于隔震垫尺寸 50-100mm。与上支墩柱相连接的框架梁高可取跨度 1/12~1/10,且应满足计算要求。本 项目上支墩层层高取值 1500mm,支墩柱截面 800*800mm,框架梁截面取值 350*700mm,楼板厚度 160mm。

下支墩层的基本要求:对于无地下室的结构模型,下支墩层的高度可根据地勘报告 提供的持力层深度确定,层高不高时可为悬壁柱,层高较高时可在柱顶设置连系梁拉结, 以增加结构整体性。下支墩柱截面尺寸通常同上支墩柱截面相同。

生物首任信自	→ 地震信息 > 地震信息 ────						
前内忌体信息 十 算控制信息 控制信息		DE OE	结构阻尼比(%) ④ 全楼统一			5	
刚度系数		0 (0 0)	○按材料区分		钢	2	
分析求解参数		8 (U.2g) V	型钢混凝土	5	混凝土	5	
【荷载信息	场现实列		偶然偏心				
重平 5 m 指定风荷载	特征周期	0.4	☑考虑偶然偏心 X	0.05	Y	0.05	
	周期折减系数	0.8	- 偶然偏心计算方法: -				
自定义影响系数曲线	特征值分析参数	[●等效扭矩法(传	统法)			
自定犬影响系数曲线 地震作用放大系数 性能设计 性能包络设计 隔震感震 设计信息	分析类型	WYD-RITZ ~	○瑞利─里兹投影	反射谱法	(新算法)		
性能包络设计	● 用户定义振型数	●用户定义振型数 18 ☑考虑双向地震作用					
· 隔震滅震 计信息	○程序自动确定振型数	90	☑自动计算最不利地震	方向的地	也震作用		
荷载信息	质里参与系数乙和(%)	150	斜交抗侧力构件方向角	度(0-90)			
构件设计信息	□ 取多旅型刻里	150	活荷载重力荷载代表值	组合系数	0.8	5	
初任设计信息 钢构件设计信息 □ 按主振型确定地震内力符 包络设计 · · · · · · · · · · · · · · · · · · ·		等号	地震剧响系数最大值		0.2	23	
料信息	砼框架抗震等级	二级 ~	用于12层以小规则ជ健	米油构调	·約別云 _ h g	3	
CKCAD-参数输入-地震信息 第4內总本信息 计算法 [1] 经期间系数应 分析结合息 计控制度系应应 分析结合息 》分析结合息 》分析结合息 》分析结合息 》分析结合的资数数 》方析结合的资数数 》方析结合的资数数 》方析结合的资数数 》方前有本意见自己 》书描述 》世能能震成息 》方符件设计设计 》目示器化分子结合 》目示器化分子结合的 》目示器化分子结	剪力墙抗震等级	二級 ~	验算的地震影响系数最	大值			
的加速度	钢框架抗震等级	二级 ~	※回地震作用系数展线	旧 - 			
1 執組合 组合系数	抗震构造措施的抗震等级		□地震计算时不考虑地	山麦印度	前列质里		
组合表	□提高一级 □降	低一级			<u> </u>		
目定义上况组合 资 定加固	□ 框支剪力遺结构底部加强	虽区剪力墙抗震等					
法国主	□ 地下一层以下抗震构造排	措施的抗震等级逐		/			
	□ 层降低及抗震措施四级	74-14-25-5-1	取7度设图	方地震	影响系数	Ż	
	│ □ 同部模型反应谱法计算型 考虑水平质量	到可地震时					
	地震影响系数最大值:						
	地震影响系数最大值由"设防	·烈度"参数控制,	软件会根据该参数的变化的	动更新	地震影响系	数最大	
	┃	、出服设计,设计人	、贝需要将"地震影响系数的	成大個″ -	手工修成入	可设的规	
与入 見出	恢复默认 高级选项			确	÷ I	取消	

图 2.1.1 (初步试算模型前处理参数设置)

图 2.1.2

计算完成后查看各项指标及配筋基本满足规范要求后将此模型的水平地震影响系数 修改为 8 度设防地震影响系数 0.45 再重新计算一遍作为非隔震模型,用于和隔震模型计 算结果对比,确定底部楼层的剪力比,从而确定上部结构的抗震措施。

二、布置隔震支座、建立隔震模型

在非隔震模型的基础上建立隔震模型,删除非隔震模型的柱底铰接设置,布置隔震 支座,设置隔震计算参数及与隔震支座相连接的构件属性后进行隔震模型计算分析。

(一) 隔震模型计算参数设置

在前处理计算参数隔震减震页下勾选隔震减震选项,设置相关隔震计算参数如图 2.2.1 所示。

图 2.2.1 隔震模型计算参数设置一

隔震层数及隔震层层号:在此处输入模型中的隔震层个数及相应的层号,此处输入 的层号为隔震支座所在的自然层号,软件按照用户输入的隔震层层号进行后续隔震层偏 心率、屈重比、抗风承载力、总水平力等结果的输出;

隔震结构设计方法:提供两个选项:分部设计法、直接设计法;该选项控制多项内 容,当选择"直接设计法"时,软件将按照隔震标准进行隔震结构的计算和设计;地震 信息中的地震影响系数最大值按照中震取值;地震组合的构件设计按照隔震标准 4.4.6 条 进行设防地震下的性能化设计;当选择"分部设计法"时,不执行隔震标准,仍然按照 抗规等进行隔震结构的设计;

"调整后水平向减震系数:选择"分部设计法"时有效,对直接设计法不起作用,该

参数由用户求出后,在对非隔震模型的反应谱法地震计算和上部结构的截面设计计算时 填入。

普通水平构件考虑钢筋超强系数:选择"直接设计法"时有效,按照隔震标准 4.4.6 条 3 款,对普通水平构件的承载力验算考虑钢筋的超强系数 1.25。

最大附加阻尼比:根据抗震规范 12.3.4 条 6 款的要求对减震结构附加阻尼比设置了默认的 0.25 限值。目前此参数对减震、隔震均起作用,对于隔震结构,一般附加阻尼比均较大,建议用户设置一个较大的值。

反应谱计算方法: 传统结构可采用实振型分解反应谱法,对于隔震结构隔震标准要 求采用复振型分解反应谱法计算, (由于直接设计法将上部结构和隔震层以及下部结构 作为整体进行分析设计,上部结构与隔震层阻尼比存在明显差异导致振型对于阻尼矩阵 不再满足正交条件,结构分析的动力方程无法采用强制解耦求解,如果强行解耦,则会 导致计算结果产生较大误差,尤其当隔震层阻尼比较大,或同时采用了阻尼器装置时, 强行解耦的误差会更大,应采用基于复振型理论的振型分解反应谱法计算),在此处选 择反应谱所采用的的方法。当选择"复振型分解反应谱法"时,按照隔震标准的复振型 分解反应谱法进行地震作用计算。

减隔震元件有效刚度和有效阻尼:当隔震结构采用反应谱法计算地震作用时,需要 设定非线性元件的等效设计参数,软件提供三种来源:采用输入的等效线性属性、迭代 确定、自动采用弹性时程计算结果;

当选择"采用输入的等效线性属性",直接采用用户输入的有效刚度和有效阻尼, 见下图: 2.2.2 所示。

31

8-LRB400 8-LNR400	类型:	隔震支座		~				设计	参数
5 IMINOU	有 ki	頁效刚度KE N∕m,kN.m/r	有效阻尼 3 adCE(kN.s/m)	线性	刚度 K(kN/m)	抗拉刚度 Kt(kN/m)	截面积 A(m2)		
	☑ V1	998000	0		998000	99800	0.123		
						屈服力KY(k	N)屈服后	刚度比I	ſΥR
	🗹 V2	104	이		7684	38.9	0.077		
	⊻ 1/3	104	0		7684	38.9	0.077		
	R1	0	0						
	R 2	0	0						
	□ R3	0	0						

图 2.2.2 隔震支座参数设置页

当选择"迭代确定",软件按照用户输入的非线性参数进行反应谱迭代计算,得到 隔震元件的等效刚度和等效阻尼,此项要求见隔震标准 4.3.2 条:采用振型分解反应谱法 时,应将下部结构、隔震层及上部结构进行整体分析,其中隔震层的非线性可按等效线 性化的迭代方式考虑。

程序迭代计算等效刚度和阻尼流程如下:

(1)对 X 向和 Y 向分别进行迭代计算;首先,对 X 向由初始状态迭代得到隔震支座 X 向的等效参数为步骤 2~6;

(2)取隔震支座屈服前刚度为初始刚度,取初始附加阻尼比为 0;

(3)进行第一次反应谱计算,得到各支座位移 u1,各振型周期,定义基本周期为相应 方向质量参与系数最大的振型对应的周期;按消能减震规程 6.3.2 计算结构应变能、各阻 尼器耗能、以及附加阻尼比 $\zeta_{d,1}$,其中结构应变能取所有振型应变能之和;结构总阻尼比 $\zeta_1 = \zeta_{1,1} + \zeta_{d,1}$;

(4)根据各隔震支座的滞回模型及各支座的位移 u1 得到用于第二次反应谱计算的等效刚度 K1;等效刚度取位移对应的割线刚度,等效阻尼系数按照《建筑消能减震技术规

程 JGJ297-2013》公式 5.6.3-4 计算, ω_1 取基本周期对应的频率;

(5)采用 K1 及 ζ_1 进行第二次反应谱计算,得到各支座位移 u2,各振型周期;

(6)重复步骤 3~5,当第 i+1 次反应谱计算得到的 ζ_{i+1} 与第 i 次反应谱计算得到 ζ_i 满足

 $\frac{\zeta_{i+1} - \zeta_i}{\zeta_i} \le 0.01$ 时,认为迭代收敛,输出此时的 Ki+1,Ci+1 作为此方向的等效参数。

(7)对 Y 向重复步骤 2~6,由初始状态迭代得到隔震支座 Y 向的等效参数。

(8)采用得到的 X 向和 Y 向的等效参数进行最后的反应谱计算,用于结构设计。

当选择"自动采用弹性时程计算结果",软件在弹性时程模块提供了按照直接积分 法结果自动计算减隔震元件有效刚度和阻尼的功能,选择该项,反应谱计算可自动读取 弹性时程模块中直接积分法计算的有效刚度和阻尼结果,接力反应谱进行地震作用计算, 选择该项时,用户应首先在弹性时程模块中完成直接积分法计算。

<u>应当注意:以上等效参数的取值仅适用于地震工况,对于恒活风等静力工况,程序</u> 采用用户输入的线性刚度进行内力计算。

包络设计: 隔标 4.7.2 条规定: 隔震层支墩、支柱及相连构件应采用在罕遇地震作用 下隔震支座底部的竖向力、水平力和弯矩进行承载力验算,且应按抗剪弹性、抗弯不屈 服考虑;因此软件在此处设置包络设计参数,自动在计算目录下生成大震计算模型,自 动进行支墩构件的大震包络设计,支墩构件配筋采用设防地震设计、罕遇地震抗剪弹性、 抗弯不屈服的较大值;

在此选项下设置大震计算模型的周期折减系数、阻尼比、连梁刚度折减系数、中梁 刚度系数等;

不屈服:计算大震不屈服模型时,软件按照隔震标准附录 A.0.3 作为依据,材料强度 取标准值,不考虑地震效应和风效应的组合,不考虑与抗震等级有关的增大系数,不考 虑荷载分项系数,不考虑承载力抗震调整系数。

弹性: 计算大震弹性模型时,软件按照隔震标准附录 A.0.3 作为依据,材料强度取设 计值,不考虑地震效应和风效应的组合,不考虑与抗震等级有关的内力调整系数。

33

抗震设防烈度	6度	7度	8度	9度
设防地震	0.12	0.23(0.34)	0.45(0.68)	0.90
罕遇地震	0.28	0.50(0.72)	0.90(1.20)	1.40
极罕遇地震	0.36	0.72(1.00)	1.35(2.00)	2.43

大震地震影响系数最大值:按照隔震标准表 4.2.1 取值。

表 4.2.1 水平地震影响系数最大值 α_{max}

注:括号中数值分别用于设计基本地震加速度为 0.15g 和 0.30g 的地区。

周期折减系数:由于高层建筑结构整体计算分析时,只考虑了主要结构构件(梁、 柱、剪力墙和筒体等)的刚度,没有考虑非承重结构构件的刚度,因而计算的自振周期 较实际的偏长,按这一周期计算的地震作用偏小。因此,在计算地震作用时,对周期进 行折减。但是由于隔震结构的动力特性不同与传统的抗震结构,对于基底隔震结构,建 议取 1.0;对于层间隔震结构,可偏保守的按常规结构取值。

特征周期: 该参数根据场地类别和设计地震分组取值,计算罕遇地震和极罕遇地震 作用时,场地特征周期应分别增加 0.05s 和 0.10s。

结构阻尼比: 该阻尼比参数只用于地震作用计算,软件提供了全楼统一阻尼比和按 材料区分阻尼比两种计算方法。"全楼统一": 软件计算时对整体结构各振型采用统一 的阻尼比(%)。"按材料区分": 设置各种材料的不同阻尼比,软件根据各构件的应 变能加权平均的方法来计算各阶振型阻尼比(%),这种情况下,应变能贡献大的构件 对该振型的阻尼比贡献较大,反之则较小。

连梁刚度折减系数: 高层建筑结构构件均采用弹性刚度参与整体分析,但抗震设计的框架—剪力墙或剪力墙结构中的连梁刚度相对墙体较小,而承受的弯矩和剪力很大, 配筋设计困难,因此可考虑在不考虑竖向承载力的前提下,允许其适当开裂(降低刚度) 而把内力转移到墙体上。新隔标建议值: 设防烈度 6、7 度时可取 0.5~0.6,设防 8、9 度 时可取 0.3~0.4。大震下的折减系数可酌情减小或取与设防地震相同。软件默认值为 0.6, 可根据设防烈度对其进行修改。 **中梁刚度放大系数:**用户可根据需要对大震下中梁刚度放大系数进行指定,对于边梁,程序根据中梁填写的放大系数自动计算,设用户输入中梁刚度放大系数值为 Bk,则 边梁刚度放大系数取(1+Bk)/2。大震下楼板开裂,不宜考虑其作为梁的翼缘对梁刚度进 行放大,建议设置为 1.0 或更小的值。

考虑双向地震作用:对是否考虑双向地震作用进行控制。《抗震规范》5.1.1.3 条规 定: "质量和刚度分布明显不对称的结构,应计入双向水平地震作用下的扭转影响;" 勾选该项,则 X、Y 向地震作用计算结果均为考虑双向地震后的结果;如果有斜交抗侧力 方向,则沿斜交抗侧力方向的地震作用计算结果也将考虑双向地震作用。对于隔震结构, 考虑双向地震对角部隔震支座在大震下的拉应力影响明显。

(二)隔震支座参数属性定义及各参数的意义详解

在前处理及计算菜单一节点属性一定义连接属性—选择隔震支座,弹出设计参数对话 框,在此输入隔震支座的设计参数,如有效直径、橡胶总厚度、二次形状系数等,软件 进行隔震支座相关验算时会自动读取此处参数,用户可根据所采用隔震支座的产品样本 进行输入,软件也已内置若干隔震支座型号的产品参数供选择使用:以下是本项目所采 用的隔震支座具体参数。

	受望希望	V2A I	前处理	受计算	· 실난62		i lasti		101203127	ff 1	计非分错时	16	情報及会	偏易間	飛成力	1.44	ALL ST	1211 3	建制設計	業工程は	it No	加約行業工	11
11月 計算 新数	で 教教 た 弦	542 542	19	107311	1 時時支援	「日本語	の教育性	· 11.小面性	SG		 21 21 21 21 	山の時	SEAC MAR SEAC MAR SEAC V	- REI	(1) 多増定文	-	10000000000000000000000000000000000000	1100 K.00	aron •	西南东南	金式双編 及数检	計算論語	J tt
							1241	NICO ME	周期生物系	「定义	•••• #.e!!!# P		設置支圧	文正位移	1 1919 1 1919 1 1919	周部兵 均単 位移	风荷数	计算长度	温度荷敷	活荷折滅	生的	2018	11
								1			关	10											
								1 法保卫	无思义							a x	積載支	度设计参数		3	×		
								LNB700 LRB700	東型	積載支座]			设计参数	(蒲+	号为必填喷》		(mark)	-0		
								LEB600 LEB600	3	有分析测量12 18/a.18 a/1	有效能尼 redCEOR s/	事线性	E BIE E(GR/m)	抗初月度 11日第7年)	創面积 A(m2)		*有 由Z	效直径(m) (直径(m)		0			
									Ba	2.896e+0	0	Ø	2.896e+00	D	0.385]		an PS III see /		130			
							1		0.0458	Takin .	1.0		10 11	眉脈力150	EN) 图解后网	的图状 发展	1.0	BC CONFIRMENT	u.	000			
									Fins	1583	10	11	0	0			*支	產+连接教忌	温(m)	202	1		
							-		Μm	1583	0		n	0	0		-3	成形状系数		20			
									□a1	0	0						- C	次形状系数		6	1		
									82	0	9										-		
									BJ	0	0							考虑附加高铁	6作用				
																		纳定		E.A.			
							1	添加	#88	应用		+ 打开	救援率 ↓	-	kte	取消	1-1-		-		-		
								- Y	1	1	1			1		1	1						

图 2.2.3 普通叠层橡胶隔震支座 LNR700 参数设置

第二章 隔震结构直接设计法软件实现流程

图 2.2.4 铅芯叠层橡胶隔震支座 LRB700 参数设置

U	ales (al	12A	前处理	及计算				946666	1 CERTIFIC	折	间积为制	掘	16年2日		酸型力	工具箱	MILLS.	Lit I	細設計	是 图设	1 N	制的行意上	HI
计算 计算 参数	一部である。	ジ 注意記記 第項目	新井泉	1 1978-11	0 1978-232	「行うない」	板開店	9.4314	SG (1) 武康 胡科 載取 選要	70 第要性 性 美教 6	日本 日	中の		+ 100 100	842X	600 600	10 风荷戦	1#6@	2 1276	通知	全成数据 生成数据 及数性		没 计算
_								Ritolm#	L. Reality	ク 豆义 油振躍性	•••• ••••• •••••• •••••	े. संस्थ		之 支援位務		N同都主 N竹菜 N囗縣	风荷载	计算长度	温度荷载	活荷折減	<u></u>	意歌編	it II
							ſ	MT 法接利方	建文							u ×	院表支部	を設け参数			×		
							0	LMR700	大型	標調支庫						设计参数	(用*号	为必填顶)			-0		
								LEBROO		有效利度理	有效阻尼	- 李秋田	,规度、	族物應	朝面积		*有効	直径(m)		202			
									⊡ u	2.625+*0	0		2.525+*0	262500	0.263	1	中孔	曹径(m)		0			
							- 1							屈服力33()	s)屈服后F	NELLANA	*橡胶	追摩唐(ma	>	110	-3		
									202	2066	0		17706	90.2	0.077		*支産	*连接板总	高(me)	245			
							-		⊠u3	2066	0		17706	90.2	0.077		一次日	影视系数		20]		
										0	0						*二次	形状系数		5			
							+			0	0						1						
										r. (w							21	的物质	D 作用				
																		議定	10	EM .			
								漆加	朝祭余	应用		↓ 打开	換据库 ↓	ē)	康	取消	1	1	-	-			
										-				4		-	-						
							i			T	1	1	1	1	1	1	1	1		1			

图 2.2.5 铅芯叠层橡胶隔震支座 LRB600 参数设置

连接单元局部坐标轴:其中 U1 轴为隔震支座轴向,U2、U3 轴为隔震支座水平方向。 U1、U2、U3 对应整体坐标系 Z、Y、-X 方向。

有效刚度(线性参数):隔震支座的有效刚度应根据实验所得的滞回曲线计算确定, 在 3 个坐标轴上意义一致,有效刚度的意义是将非线性构件等效成一根线性构件后的刚 度,此刚度对结构周期、反应谱计算和快速非线性(FNA)时程分析结果有较大影响。 U1 方向有效刚度代表竖向变形特性,U2 和 U3 方向有效刚度代表其水平剪切刚度,有效 刚度只用于线性分析工况。此参数只对减隔震元件有效刚度和有效阻尼选择"采用输入 的等效线性属性"时对计算结果有影响,当选择迭代确定或自动采用弹性时程计算结果 时,此参数在分析中不发挥作用。

当隔震支座采用输入等效线性属性时,设防地震有效刚度可输入隔震支座 100%剪切 应变时的等效参数,罕遇地震有效刚度可输入隔震支座 250%剪切应变时的等效参数,极 罕遇地震有效刚度可输入隔震支座 400%剪切应变时的等效参数。

有效阻尼(线性参数):隔震元件的有效阻尼,体现线性分析中隔震元件的耗能能力,与隔震元件的剪切应变相关。此参数只对减隔震元件有效刚度和有效阻尼选择"采 用输入的等效线性属性"时有效,影响结构附加阻尼比,从而影响反应谱计算结果。当 选择迭代确定或自动采用弹性时程计算结果时,此参数在分析中不发挥作用。

对于非线性参数,轴向和水平向意义不一致,下面分别说明

轴向(U1)非线性参数

刚度:隔震支座轴向受压刚度,一般与 UI 方向线性刚度一致。

抗拉刚度:隔震支座轴向受拉刚度,一般取隔震支座轴向受压刚度的1/10。

截面积: 隔震支座的横截面积,弹性时程模块会使用该参数计算隔震支座的拉压应力,若填 0,则对应的隔震支座拉压应力均为 0.

水平方向(U2、U3)非线性参数

刚度:隔震支座水平方向的初始刚度,即屈服前刚度。

屈服力:隔震支座的屈服力,由实验确定,来自产品参数。

屈服后刚度比:隔震支座屈服后的刚度与屈服前刚度的比值。参考《橡胶支座第3 部分:建筑隔震橡胶支座》GB20688.3—2006中的规定,一般建筑结构取1/10,桥梁结 构取1/6.5。

有效直径、橡胶总厚度:隔震标准 4.6.6 条第 1 款,橡胶隔震支座在罕遇地震作用下的水平位移限值取值不应大于支座直径的 0.55 倍和各层橡胶厚度之和 3.0 倍二者的较小值;此二参数用于支座位移限值的计算。

中孔直径:当支座内部有中心孔时,孔周围会出现应力集中。当中心孔直径大于支座直径的 1/20 时应力集中明显,中心孔的存在会降低支座的极限承载能力。

支座+连接板总高度:即隔震支座总高度,由三部分组成,橡胶总厚度+内部钢板总 厚度+上下法兰板厚度,当考虑隔震支座的附加弯矩时,需要支座的总高度数据,软件会 自动读取设计参数中的"支座+连接板总高"进行此项计算。此参数由隔震厂家提供。

一次形状系数 S1: 隔震支座是由多层钢板与多层橡胶叠合而成,单层的力学特性会影响整体的力学特性,一次形状系数是控制每层橡胶厚度的形状系数,由隔震厂家提供。

 $S_1 = \frac{$ 橡胶受约束面积(受压面积)} 单层橡胶的自由表面积(侧面积)

第一形状系数越大,说明橡胶层越薄,钢板对其约束作用也就越大,支座竖向刚度 和承载力也就越高。

二次形状系数 S2: 第二形状系数是控制橡胶支座稳定性的形状系数。与橡胶层受压 面积的最小尺寸和橡胶总厚度有关,按下式计算:

$$S_2 = \frac{ \mathcal{G} \dots \mathcal{G} \dots \mathcal{G} \dots \mathcal{G}}{ k \dots \mathcal{G} \dots \mathcal{G}}$$

第二形状系数又称为橡胶层的宽高比,控制支座压屈荷载和水平刚度,S2 越小,表 明支座越细高,刚度越小,容易压屈,竖向承载力随之降低。S2 越大,说明橡胶总厚度 越薄,刚度越大,稳定性越好,竖向承载力也越大。从隔震效果看要求 S2 越小约好,但 在竖向力作用下隔震支座又容易失稳,在设计中应合理控制 S2 的大小。

隔震标准 4.6.3 条第 2 款,对于橡胶隔震支座,当第二形状系数小于 5.0 时,应降低 平均压应力限值:小于 5 且不小于 4 时降低 20%,小于 4 且不小于 3 时降低 40%;此参 数用于隔震支座在重力荷载代表值作用下的压应力限值计算。

考虑附加弯矩作用:隔震标准 4.7.1 条规定,隔震层下部结构的承载力验算应考虑上 部结构传递的轴力、弯矩、水平剪力,以及由隔震层水平变形产生的附加弯矩,如下图

2.2.7 所示;当选择该项时,软件自动考虑附加弯矩对结构的内力影响。

图 2.2.6 隔震层水平变形产生的附加弯矩计算简图

隔震橡胶支座水平变形后,隔震支墩及连接部位的附加弯矩按下式计算:

$$M = \frac{P\delta + Vh}{2}$$

式中,M-隔震支墩及连接部位所受弯矩

P—上部结构传递的竖向力

 δ —支座水平剪切变形

V—支座所受水平剪力

h—支座总高度

程序对应 4 个水平地震工况生成 4 个附加弯矩工况,如下图所示,以+X 向地震为例, 计算+X 向附加弯矩时, V、 δ 为+X 向水平地震工况下的支座剪力及位移, P 为 1.0S_{GE}+1.0EX(+)组合下的支座轴力,以此计算+X 向的支座附加弯矩及该工况下的内力分 布,并与+X 向地震工况同时组合;其余方向同此处理。

(三) 布置隔震支座

模型切换到上支墩层布置隔震支座,依次点击节点属性—单点约束—柱底节点布置隔 震支座,隔震支座布置方法及布置完的隔震支座平面图如下图所示。红色框为:LRB700, 蓝色框为 LRB600,其余均为 LNR700

图 2.2.7 隔震支座布置示意图

隔震结构直接设计法软件实现流程 第二章

图 2.2.8 隔震支座平面布置图

(四) 隔震设计补充定义

特殊构件定义中设置"隔震设计",包含支墩及相连构件、构件类型、性能设计三 个功能, 见下图 2.2.9 所示:

图 2.2.9 隔震层设计属性补充定义

2.4.1 隔震层支墩、支柱及相连构件指定:隔标 4.7.2 条规定隔震层支墩、支柱及相连构件应进行大震性能包络设计,此参数用于对构件进行"支墩及相连构件"属性的设置,设置了支墩及相连构件属性的构件才会进行包络设计,见下图 2.2.10 所示:

○ 2010 日本 1000 1		シロション ・ </th <th>I</th>	I
🗋 支墩及相连构件《GB/T 51408-2021》	风荷载 计算长度	温度荷载 活荷折减 生成数据 计算	I
• 柱 • 梁			
□ 构件类型《GB/T 51408-2021》			
• 梁 • 墙梁 🎤 删除本层	隔震支域或相连构件	隔震支壕或相连构件	隔震支墩或相连构件
• 柱 • 墙柱 🎤 删除全楼			
• 支揮			
🕒 性能设计《GB/T 51408-2021》			
・ 梁 ・ 壊梁 🎤 删除本层			
• 柱 • 塘柱 💉 删除全楼			
• 支撑			
关闭			
	肠莫支堆或 相连构件	杨褒支徵或相連构件	属蔑支状或 加速拘件

图 2.2.10 隔震层支墩、支柱及相连构件指定

2.4.2 构件类型指定: 隔标规定构件设计采用中震下的性能设计,隔震结构构件根据 性能要求分为关键构件、普通竖向构件、重要水平构件和普通水平构件,对不同类型的

「	楼层属性 八荷號 计算长度 风荷號 计算长度	● 日本 100 日本 10				
・ 住 ・ 原 ・ 校 ・ 原 ・ 物件実現(GB/T 51406-2021) ・ 堤 ペ ・ 堤 都珍本県 ・ 堤 ペ ・ 堤 都珍本県 ・ 堤 ペ ・ 堤 都珍本県 ・ 麦 運 ・ 増加会社 (GB/T 51406-2021) ・ 堤 ペ ・ 堤 秋谷本県 ・ 住 ・ 堤 任 愛 翻絵本県	关键	关键	关键	关键 •	关键 •	关键 •
- 支理 - 大切 - - - - - - - - - - - - -	关键 	关键 •	关键 [•]	关键 	关键 •	关键 •
阿爾亞科夫提 1. 关键的4. 全語通知的物件 2. 重要水平的 14. 考试器具化例件 70. 建筑成器设计标道 (a. <u>1</u> . 514/0-2021) 20 (a. <u>1</u> . 514/0-2021) 20	关键	关键	关键	关键 [1]	关键 •	关键 •
	关键 ▲	关键 •	关键	关键 •	关键 •	关键 •

构件按照隔震标准 4.4.6 分别采用弹性和不屈服的设计方法。

图 2.2.11 构件类型指定一

图 2.2.12 构件类型指定二

图 2.2.13 构件类型指定三

2.4.3 构件性能目标指定: 隔标 4.7.2 条规定隔震层支墩、支柱及相连构件应进行大 震性能包络设计, (指定完构件类型后软件会自动执行新隔标对支墩、支柱及相连构件 构件按大震斜截面弹性,正截面不屈服设计,软件开放此参数用户也可对其进行交互修 改)。

	日本 一 一 一 一 一 一 一 一 一 一 一 一 一	一般 一般 一般 「」 「一》 「一》 「 一般 「 一 「 一 「 一 「 一 「 一 「 一 「 一 「	◎塔定义 -2021》	様展歴性	↓ 二 二 二 二 二 二 二 二 二 二 二 二 二	□ 計算长度 计算长度	● 温度荷载 ● 温度荷载	□□□□ 活荷折减 ▼ 活荷折减	生成数据 及数检 生成数据		<mark>♀</mark> +車 +算					1 第1标准层	, E
E		51408-2021) 《 删除本 《 删除全 51408-2021) 《 删除本 《 删除本		×	寶:不履 •	· <i>服 /</i> 蝉性]	大寬:	不屈服 /弾 •	性 大寶	: 不居服 •	/弹性	大寶:不愿服 /弹性 •	大震	: 不扇服 /鲜性 •	ŧ 大赛:	不屈服 /蝉世 ▲	Ł
III X KIIII	 ● (1) ● 中震 正截面 ● 不考虑 ● 不考虑 ○ 不易虑 ○ 弾性 	 (利載面) (● 不考虑) ○ 不屈服) ○ 弾性 		¥	廣:不居 ▲	.廠 /弹性]	大震:	不屈服 /弹 	性 大震	: 不是服 •	/弹性	大寶:不恩服 /弹性 -	大震	: 不屈服 /弹性 •	ŧ 大橋:	不屈服 /弹性 •	Ł
	 ✓ 大震 正截面 ○ 不考虑 ● 不屈服 ○ 弾性 	斜截面 ○不考虑 ○不屈服 ●弾性		*	虞:不居 •	<i>服 /</i> 弹性]	大寬:	不屈服 /弊 •	性 大震	: 不屈服 •	/弹性	大寶:不愿服 /弹性 •	大震	: 不屈服 /聲性 	t 大震	不屈服 /弹性 •	ŧ
				大	虞:不屈 •	/弹性]	大震:	不屈服 /弹 -	性 大震	: 不 启服 •	/弹性	大震:不屈服 /鲜性	大震	: 不屈服 /弹性 	t 大家	不屈服 /蝉性 •	ŧ

图 2.2.14 构件性能目标指定

(五) 抗震等级及轴压比修改

特殊构件定义修改与隔震支座相连接构件的抗震等级,关于隔震结构的抗震等级相 关规定详见隔标 6.1.3 条 6.1.4 条。本项目下支墩层抗震等级为一级,隔震层以上结构抗 震等级为二级。

55 20		□ ↓ ② ↓ ↓ · ↓ · ↓ · ↓ · ↓ · ↓ · ↓ · ↓ · ↓	生成数据 及数检 ・ 中華 は 算 値 の 数 低 ・ は 算 値 の の 、 、 、 、 、 、 、 、 、 、 、 、 、		全 ♥ ♥ ^{第1初編}
		<u>算长度 温度荷載 活荷折減</u> 1级 /1级 14 ▲	<u>生成数据</u> 计算 及 /1级 1级 / ・ ・	/1级 1级 /1级] •	1级 /1级 王
 ★ 参数法 参数法 ◆ 数数值 ● 気震等级 1 ● 気震等级 1 ● 気震等级 1 	1级 /1级 、	1级 /1级 11 (₩ /1₩ 1₩ / • •	Y1级 1级 /1级] ・	1级 /1级 *
就要称些 相關人業等效 「加利一川」。(2011年後年。 電野11指定民業特倫措施民業等 数。	1级 /1级 •	1级 /1级 11	级 /1级 1级 / • •	们级 1级 /1级] ▲	1级 /1级 •
	1级 /1级 •	1级 /1级 15 ▲	₩ 149 /149 /149 / • •	′1级 1级 /1级] ▲	1级 /1级 (

图 2.2.15 隔震层以下结构构件抗震等级指定

由于隔震支座不隔离竖向地震,所以与竖向构件相关的构造措施不应降低,按原设 防烈度规定的轴压比限制采用,具体规定详见隔标 6.1.3 条第三款相关规定。

图 2.2.16 框架柱轴压比限制增减量指定

注:轴压比增减量限值只需定义隔震层以上竖向构件,隔震层以下竖向构件不需要 定义.但是隔震层以下竖向构件限制一般不宜大于隔震层以上的限制。

三、计算分析

点击生成数据,并计算,完成后自动切换到设计结果中。

四、结果查看

(一)整体指标及配筋结果查看

与常规抗震结构结果查看相同,需要注意的是隔震层以上柱轴压比按不降低抗震等级的限值执行(本项目按一级轴压比限值执行),最小剪重比按原设防烈度对应的多遇 地震执行即 0.032 最小限值执行、位移角限值按设防地震控制(对框架结构,设防地震 下隔震层以上结构 1/400,隔震层以下 1/500)此处不再详细说明。

(二) 隔震支座验算及结果查看

4.2.1 隔震层支座信息、质心刚心、支座等效刚度等效阻尼系数结果查看:

规范相关规定:《建筑隔震设计标准》GB/T51408-2021 第 4.2.2 条,隔震结构自振 周期、等效刚度和等效阻尼比,应根据隔震层中隔震装置及阻尼装置经试验所得滞回曲 线对应不同地震烈度作用时的隔震层水平位移值计算,并应符合下列规定:

1可按对应不同地震烈度作用时的设计反应谱进行迭代计算确定,也可采用时程分析 法计算确定。

2 采用底部剪力法时,隔震层隔震橡胶支座水平剪切位移可按下述取值:设防地震作 用时可取支座橡胶总厚度的 100%,罕遇地震作用时可取支座橡胶总厚度的 250%,极罕 遇地震作用时可取支座橡胶总厚度的 400%.

软件结果查看:

46

图 2.4.1 隔震层支座信息、质心刚心、支座等效刚度等结果查看隔震层偏心率验算:

规范相关规定:《建筑隔震设计标准》GB/T51408-2021 第 4.6.2-4 条款,隔震层刚度中 心与质量中心宜重合,设防烈度地震作用下的偏心率不宜大于 3%。 隔震层偏心率计算步骤如下:

(1)重心

$$X_g = \frac{\sum N_{l,i} \cdot X_i}{\sum N_{l,i}}, Y_g = \frac{\sum N_{l,i} \cdot Y_i}{\sum N_{l,i}}$$

(2) 刚心

$$X_{k} = \frac{\sum K_{\text{ey},i} \cdot X_{i}}{\sum K_{\text{ey},i}}, Y_{k} = \frac{\sum K_{\text{ex},i} \cdot Y_{i}}{\sum K_{\text{ex},i}}$$

(3)偏心距

$$\boldsymbol{e}_{x} = \left| \boldsymbol{Y}_{g} - \boldsymbol{Y}_{k} \right|, \boldsymbol{e}_{y} = \left| \boldsymbol{X}_{g} - \boldsymbol{X}_{k} \right|$$

(4)扭转刚度

$$K_{t} = \sum \left[K_{ex,i} (Y_{i} - Y_{k})^{2} + K_{ey,i} (X_{i} - X_{k})^{2} \right]$$

(5)弹力半径

$$R_{x} = \sqrt{\frac{K_{t}}{\sum K_{ex,i}}}, R_{y} = \sqrt{\frac{K_{t}}{\sum K_{ey,i}}}$$

(6)偏心率

$$\rho_x = \frac{e_y}{R_x}, \rho_y = \frac{e_x}{R_y}$$

式中, $N_{l,i}$ 为第 i 个隔震支座在重力荷载代表值下的轴力, X_i, Y_i 为第 i 个隔震支座中心位置 X 方向和 Y 方向坐标, $K_{ex,i}, K_{ey,i}$ 为第 i 个隔震支座在隔震层发生位移 δ 时,X 方向和 Y 方向的等效刚度。

软件结果查看:

1006H01	↓ 柱顶											0	を し し し し し し し し し し し し し し し し し し し
■ "Isolu 文件① , 计算依打 方向 X向 Y向	ationEccer 编辑(E) 1 ********* 居:根据 层号 2 2 2	unificityRatio.com httricityRatio.com 格式(2) 查到 《建筑隔篇 塔号 1 1	 していていていていていていていていていていていていていていていていていていてい	2002 強算 GB/T51408-2021 の単心坐結 26.586 14.881	第4.6.2-4条款,隔震 (m) 偏心距(m) 5 0.0004 1 0.0001	3月90度中心与质 弹力半径(m) 24.7924 24.7882	「量中心宣重さ (量中心宣重さ (回) 備心率(%) (0.0004 (0.0014	1.25m 合,设防烈 5)	度地震作用下	的偏心者	- C	1 ×	 福島電道田 ○ 黄金須心 ○ 黄心和 ○ 黄心和 ○ 黄小和 ○ 島水中カ 豆子高茂 登太 第小 立病 ※備大 浜山 立病 关田

图 2.4.2 隔震层偏心率验算结果

隔震层抗风验算:

规范相关规定:根据《建筑隔震设计标准》GB/T51408-2021 第 4.6.8 条,隔震层的抗风 承载力应符合下列规定:

 $\gamma_{\rm w} V_{\rm wk} \leq V_{Rw}$

式中:

V_{Rw}:隔震层抗风承载力设计值(N),隔震层抗风承载力由抗风装置和隔震支座的屈服 力构成,按屈服强度设计者确定。

 γ_w :风荷载分项系数,可取 1.4。

 V_{wk} :风荷载作用下隔震层的水平剪力标准值(N);

软件结果查看:

	x64 - 盈建科制	建筑结构计算模块——	YJK-&[4.0.0] - [C:\Us	ers\HZF\Desktop}隔	言算例 隔盂模型 1]			×면- 립순 🖸 🕹
弹性时程分析 直	1接积分法时程 橫板5	及设备振动 预应力	工具箱 机体设计 1	基础设计 除工图设计	预制构作施工图 钢	结构图 非线性计算	二條图形编辑 •	
2日 2	₩ 🕅 柱顶 🕻					🔁 🖏 🖏	🖷 🚽	😭 🜷
組合梁 → 備拉 №		四本1 町方 三線豊示	三雄 🦾 屈曲 🖵 楼屋 位移 🦾 屈曲	₩	设计 标准层 工具 配筋	文本 批量 隔栗层 易图 结果	计算书 导出	*第2层(标准层2)(隔表层) -
	标准内力	梁内力包络 三维显示	变形图	预组合内力 等值线	模型切换 工具	工程对比 导图 隔黄层	计算书 导出	
150180040004685 文件(F) 編載(E) 格式 ************************************	はBance out - 10年4- (の) 重着(小 帮助(H) 隔震层抗风承載 建筑隔震设计标准》 孫数(可取1.4)*及 承載力由抗风装置和 「四本日上、工業からに、	载力验算 GB/T51408-2021复 风荷载作用下隔震层 I隔震支座的屈服力机	84.6.8条款, 的水平夠力标准值 <= 隔 响成,按屈服强度设计值	囊层抗风承载力设计 确定。	值	_		
Vwk: 风荷载作用 P Vrw: 隔震层抗风承 Res: 验算结果,风 层号 塔号 V	下隔震层水平剪刀标。 乘载力设计值 1荷载分项系数(可耶 /wk-X(kN) Vwk	@推慎 取1.4) * 风荷载作用 <-Y(kN) Vrw-	下隔震层的水平剪力标准 -X(kN) Vrw-Y(kN	值 <= 隔震层抗风承	载力设计值 es-X	Res-Y 是	1百满足	〇总水平力 显示底图 除藏底图
2 1 113	30.63 1863.62	2 3226.00	3226.00 1	130.63*1.4 < 3226.0	1863.62*1.4	4 < 3226.00	满足	X-¥-ABE 加大 職小 应用 美闭

图 2.4.3 隔震层抗风验算结果

隔震层屈重比验算:

隔震建筑屈重比是参考日本隔震设计相关规定,我国规范未做此方面相关要求,有 关资料研究表明屈重比对高层建筑隔震效果影响明显,对多层建筑结构影响相对较小。 软件提供屈重比计算结果供结构工程设计人员参考。

2016 	0x MSC 1111 MSC 201111 MSC 2011111 VSC 20111111 VSC 20111111 VSC 201111111	4 - 盈建料 計 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	建筑结构计 3月41年50 電短 電力 案内力包格	算機块		[4.0.0] - 振型 派曲 変形圏	- [C:\Use 公社 了 质O 振动 足 結果	TES (HZF \ Des CHIQH E 底层 CR CR 石年 预组合内力	ktop \第 THO 等值线 等值线	注算例(隔部) 活動の(例) 活動の(例) 活動の(例) 構動の(例) 構動の(例)	(株型、11) (株) 「「「「」」」 (法) 「「」」」 (法) 「「」」」 (法) 「「」」」 (法) 「」」 (法) 「」		北星寺四	同時に見ていた。	★ 1000000000000000000000000000000000000	日本 - 日本	•		登 ⑦ 台 1 1 第2篇(6:4	() — d , 层2)(隔表层)
■ *lso 文件E 星号 2	ationYieldGru 編組(E) 格式 ····································	avityRatio.out 式(① 查看(<u>U</u> 屈重 小***********************************	- 记事本 0	******** Y向隔篇 32	******** 11层屈服 26.00	访(kN)	****** ****** 隔震层 145	以上的重力(1018.75	kN)	X向屈重比 2.16	(%) Y庐	D屈重比(%) 2.16	下限值 2.(፤ (%) 00	是	- [西满足 满足	×	隔歳 ビ ビ 隠 健 ○ ○ ○	言論图 支座信息 気心 同心 支座等効 同語 言論 算 論 心 率 抗 屈重 比 忌 次 平 力	意及阻尼
						屈重比但是有	的相关规关资料研	定参考日本	的相关,比对高质	砚定, 我国 豊结构隔震)	高震结构设计 文果影响较为	十规范未作精 大,对多层结	目关规定 吉构影响	』, 列不是很	明显。			型示 文字高 成	底图	隐藏底图 重小 关闭

图 2.4.4 隔震层屈重比验算结果

风荷载作用隔震层产生的总水平力验算:

规范相关规定:

根据《建筑抗震设计规范》GB50011-2010(2016 年版)第 12.1.3-3 条款,风荷载和 其他非地震作用的水平荷载标准值产生的总水平力不宜超过结构总重力的 10% 软件结果查看:

图 2.4.5 风荷载作用隔震层产生的总水平力验算结果

4.2.2 隔震支座应力及位移验算:

规范相关规定:

《建筑隔震设计标准》GB/T51408-2021 第 4.6.3 条规定:隔震支座的压应力和徐变性能应符合下列规定:

1隔震支座在重力荷载代表值作用下,竖向压应力设计值不应超过表 4.6.3 的规定。

2 对于隔震橡胶支座,当第二形状系数(有效直径与橡胶层总厚度之比)小于 5.0 时, 应降低平均压应力限值:小于 5 且不小于 4 时降低 20%,小于 4 且不小于 3 时降低 40%; 标准设防类建筑外径小于 300mm 的支座,其压应力限值为 10MPa。

3 对于弹性滑板支座,橡胶支座部及滑移材料的压应力限值均应满足表 4.6.3 的规定, 支座部外径不宜小于 300mm。

4 对于摩擦摆隔震支座,摩擦材料的压应力限值也应满足表 4.6.3 的规定。

5 在建筑设计工作年 限内,隔震支座刚度、阻尼特性变化不应超过初期值的±20%; 橡胶支座的徐变量不应超过内部橡胶总厚度的 5%。

表 4.6.3 隔震支座在重力荷载代表值作用下的压应力限制(MPa)

支座类型	特殊设防类建筑	重点设防类建筑	标准设防类建筑
隔震橡胶支座	10	12	15
弹性滑板支座	12	15	20
摩擦摆隔震支座	20	25	30

《建筑隔震设计标准》GB/T51408-2021 第 6.2.1 条规定: 罕遇地震作用下隔震支座的竖向受力应符合下列规定:

1 隔震橡胶支座、弹性滑板支座和摩擦摆隔震支座的最大竖向压应力分别不应超过 表 6.2.1-1~表 6.2.1-3 所规定的限制。

2 隔震橡胶支座竖向拉应力不应超过表 6.2.1-4 所规定的限制,且同一地震动加速度 时程曲线作用下出现拉应力的支座数量不易超过支座总数的 30%。

3 弹性滑板支座,摩擦摆隔震支座或其他不能承受竖向拉力的支座宜保持受压状态。

表 6.2.1-1 隔震橡胶支座在罕遇地震下的最大竖向压应力限值

建筑类别	特殊设防类建筑	重点设防类建筑	标准设防类建筑
压应力限制(MPa)	20	25	30

注:隔震橡胶支座的直径小于 300mm 时,其压应力限值可适当降低。

表 6.2.1-2 弹性滑板支座在罕遇地震下的最大竖向压应力限值

建筑类别	特殊设防类建筑	重点设防类建筑	标准设防类建筑
压应力限值(MPa)	25	30	40

注: 弹性滑板支座中的橡胶支座部及滑移材料的压应力限值均应满足本表。

第二章 隔震结构直接设计法软件实现流程

建筑类别	特殊设防类建筑	重点设防类建筑	标准设防类建筑
压应力限值(MPa)	40	50	60

表 6.2.1-3 摩擦摆隔震支座在罕遇地震下的竖向最大压应力限值

注: 摩擦摆隔震支座中的摩擦材料的压应力限值均应满足本表。

表 6.2.1-4 隔震橡胶支座在罕遇地震下的竖向拉应力限值

建筑类别	特殊设防类建筑	重点设防类建筑	标准设防类建筑
拉应力限值(MPa)	0	1.0	1.0

注:隔震支座验算最大压应力和最小压应力时,应考虑水平及竖向地震同时作用产生的 最不利轴力,其中水平和竖向地震作用产生的应力应取标准值。

《建筑隔震设计标准》GB/T51408-2021 第 6.2.1 条文说明:在罕遇地震作用下,隔 震支座将会在重力荷载代表值产生的竖向压应力基础上叠加较大的竖向拉、压应力,因 此,需要分别设定不同的隔震橡胶支座和弹性滑板支座的竖向压应力限值,以及隔震橡 胶支座的竖向拉应力限值。摩擦摆支座和弹性滑板支座没有竖向受拉能力,不允许出现 拉应力。最大压应力和最小压应力的计算参照下列公式:

最大压应力=1.0*恒载+0.5*活载+1.0*罕遇水平地震作用产生的最大轴力+0.4*竖向 地震作用产生的轴力

最小压应力=1.0*恒载-1.0*罕遇水平地震作用产生的最大轴力-0.5*竖向地震作用产 生的轴力

多层尤其是高层建筑隔震设计过程中,应重点关注隔震支座受拉问题。罕遇地震作 用下,隔震橡胶支座的最大拉应力应满足本标准前文规定的数值,且出现拉应力的支座 数量不宜过多,限制在不超过支座总数的 30%以下。弹性滑板支座没有竖向受拉能力, 罕遇地震作用下为防止其提离,必须保持处于受压状态。

《建筑隔震设计标准》GB/T51408-2021 第 4.6.6 条规定:隔震支座在地震作用下的 水平位移应符合下式规定:

52

 $\boldsymbol{u}_{hi} \leq \! \left[\boldsymbol{u}_{hi} \right]$

式中:

[u_{hi}]: 第 i 个隔震支座的水平位移限值(mm);

u_{hi}: 第 i 个隔震支座考虑扭转的水平位移(mm)。
 隔震支座在地震作用下的水平位移按如下规定取值:

除特殊规定外。在罕遇地震作用下隔震橡胶支座 [u_{hi}]取值不应大于支座直径的
 0.55 倍和各层橡胶厚度之和 3.0 倍二者的较小值;弹性滑板支座的 [u_{hi}]取值不应大于其
 产品水平位移的 0.75 倍;摩擦摆隔震支座的 [u_{hi}]取值不应大于其产品水平极限位移的
 0.85 倍。

对特殊设防类建筑,在极罕遇地震作用下隔震橡胶支座的[u_{hi}]值可取各层橡胶
 厚度之和的 4.0 倍;弹性滑板支座、摩擦摆隔震支座的[u_{hi}]值可取产品的水平极限位移;
 隔震层宜设置超过极罕遇地震下位移的限位装置。

3. 软件结果查看: (验算最大压应力、最大拉应力时需要考虑竖向地震作用,考 虑竖向地震作用后软件自动按隔标 6.2.1 条文说明相关组合验算隔震支座最大压应力,最 大拉应力,隔震支座最大水平位移软件取单工况水平地震作用下的位移值,如需考虑恒 载和活载组合需要在时程下定义相应工况组合)。

图 2.4.6 隔震支座应力及位移验算结果

应当注意:如果模型勾选了偶然偏心或者双向地震,支座应力及位移计算中会考虑 相应地震工况的组合;因此,如果用户不想在支座应力及位移计算中引入上述工况,应 在验算支座应力及位移时取消勾选偶然偏心或双向地震;(注:如若上部反应谱隔震支 座验算结果出现拉应力,建议补充时程分析,支座应力以时程分析结果为准)

4.2.3 隔震支座内力及位移结果

第二章 隔震结构直接设计法软件实现流程

图 2.4.7 隔震支座内力及位移结果

五、确定减震目标

隔震模型和非隔震模型结果对比,校核隔震模型底部剪力比是否小于 0.5,满足初步 设定的减震目标,如果满足则可以进行下部设计,如不满足则需要调整隔震支座的类型 及布置情况等,直到满足减震目标为止,实在困难时也可以降低减震目标按不降低一度 设计也是可行的。

振型阶数	非隔震模型	隔震模型	隔震/非隔震
1	0.8838(X)	2.4671(X)	2.79
2	0.8654(Y)	2.4624(Y)	2.85
3	0.8646(Z)	2.2015(Z)	2.55

非隔震模型和隔震模型的基本周期对比

楼层		X 向楼层剪	亨力		Y 向楼层剪	力
	非隔震	隔震	隔震/非隔震	非隔震	隔震	隔震/非隔震
5	9291.42	1969.47	0.212	9476.41	1964.66	0.207
4	13998.47	3324.08	0.238	14226.03	3316.72	0.233
3	19241.81	5535.05	0.288	19464.69	5525.78	0.284
2	24201.63	7769.94	0.321	24476.05	7762.19	0.317
1	28048.85	9953.29	0.355	28346.26	9952.74	0.351

非隔震模型和隔震模型楼层剪力对比

注:此处的非隔震模型楼层剪力结果应为原设防地震下的结果,即地震影响系数应为 0.45。底部剪力比小于 0.5,上部结构抗震措施可以按降低一度取值;能满足初步设定的减震目标。

六、隔震结构罕遇地震弹性时程补充计算

根据新隔标的相关要求,需要验算隔震支座在大震下的最大压应力、最大拉应力、 支座的变形、抗倾覆验算等,评价隔震结构的减震效果。软件除了支持在反应谱结果中 输出大震下的验算指标,还可以在弹性时程中进行各项指标的验算。

(一) 地震波选择条件

《抗规》5.1.2 第3款相关规定:

采用时程分析法时,应按建筑场地类别和设计地震分组选用实际强震记录和人工模 拟的加速度时程曲线,其中实际强震记录的数量不应少于总数的 2/3,多组时程曲线的平 均地震影响系数曲线应与振型分解反应谱法所采用的地震影响系数曲线在统计意义上相 符,其加速度时程的最大值可按表 5.1.2-2 采用。弹性时程分析时,每条时程曲线计算所 得结构底部剪力不应小于振型分解反应谱法计算结果的 65%,同时也不应大于振型分解 反应谱法 135%,多条时程曲线计算所得结构底部剪力的平均值不应小于振型分解反应谱 法计算结果的 80%,同时也不应大于振型分解反应谱法 120%, 当取三组加速度时程曲线输入时,计算结果宜取时程法的包络值和振型分解反应谱 法的较大值;当取七组及七组以上的时程曲线时,计算结果可取时程法的平均值和振型 分解反应谱法的较大值。

所谓"在统计意义上相符"指的是,多组时程波的平均地震影响系数曲线与振型分 解反应谱法所用的地震影响系数曲线相比,在对应于结构主要振型的周期点上相差不大 于 20%。

主要振型:对于一些复杂的结构和一些空间结构体系,周期最大的振型不一定是主 振型,应检查其振型质量参与系数最大的振型所对应的周期来比较。

YJK 软件提供自动选波功能方便各位设计师选择符合规范的地震波。本案例选择 2 条强震记录和 1 条人工模拟加速度时程(2 条天然波+1 条人工波),3 条时程曲线信息如 下。

T1 Chi-Chi_Taiwan-03_NO_2536,TG(0.44)

R1 ArtWave-RH2TG045,Tg(0.45)

时程名称	第一次达到该时程曲 线最大峰值 10%对应 的时间(S)	最后一次达到该时程曲 线最大峰值 10%对应的 时间(S)	有效持续时间 (S)	结构周期 (S)	比值
TI	0.80	43.30	42.50	2.4671	17.23
T2	4.60	24.70	20.10	2.4671	8.15
R1	0.50	17.40	16.90	2.4671	6.85

工况		反应谱	TI	T2	R1
基底剪力	X 向	24234.782	17414.216	20657.170	20708.144
	Y 向	24251.353	17454.343	20710.454	20722.107
比列%	X 向	100%	71%	85%	85%
	Y 向	100%	71%	85%	85%

表 2.6.2 隔震模型大震反应谱与时程工况基底剪力对比

图 2.6.1 规范反应谱曲线与各时程反应谱曲线对比图

(二) 工况定义(分析方法选择直接积分法)

弹性时程分析模块 YJK4.1.1 以后版本对弹性时程分析新、弹性时程分析以及直接积 分法时程三个菜单做了整合,统一修改为弹性时程分析模块,用户如用 YJK4.1.1 及以后 版本在弹性时程分析(新)下做时程补充计算即可。

第二章 隔震结构直接设计法软件实现流程

模	型荷载	输入	前处理及计	十算 i	设计结果	弹性时	时程分析	楼板及	设备振动	预应力	I I	有 砌体设	计 基础	设计 施工图
+	-	-^_	E	4	R	AA	F	₫*		ţ				t de
用户波	人工波	地震波	工况定义	工况组合	计算	节点变形	楼层结果	连接单元	能量曲线	隔震支座	隔震层	隔震送审报告	附加阻尼比	反应谱规范谱
- 3 7	土成	加中					v				Ŧ			*
自定义	地震波		前处理		计算		后	心理			隔震验	算	减震计算	对比图
		工况列表									×			
			-						1					
		序号			名称			分析方法	是否计	算				
		1	A	ArtWave-RH	2TG045,T	g(0.45) [0.0]		直接积分法			增加			
		2	A	rtWave-RH	2TG045,Tg	g(0.45) [90.0]]	直接积分法						
		3	Chi-C	hi_Taiwan-0	3_NO_25	36,TG(0.44)	[0.0]	直接积分法			修改			
		4	Chi-C	hi_Taiwan-0	3_NO_253	36,TG(0.44) [90.0]	直接积分法						
		5	Imp	erial Valley-	06_NO_1	51,Tg(0.45) [0.0]	直接积分法			刪除			
		6	Impe	rial Valley-(06_NO_16	1,Tg(0.45) [9	0.0]	直接积分法	£ 🔽					
											● 罟 一			
		-												
		注: 单	自击"重置"按镇	出后,程序将	根据选择的	的地震波生成	默认的工况列	し しょうしん しょうしょう しょうしん しょうしん しょうしょう しょうしん しょうしん しょうしょう しょうしん しょうしょ しょうしょ しょう しょう しょう しょう しょう しょう しょう						
					确定		H	则消						

(三) 定义工况组合

(截图所示工况为地标组合,组合加载依据各地审图要求及隔标相应设置)

罕遇地震作用下隔震支座最大压应力工况组合取值:

 $1.0D + 0.5L + 1.0Fek + 0.4*0.2 \quad (1.0D + 0.5L) = 1.08D + 0.54L + 1.0Fek$

罕遇地震作用下隔震支座最大拉应(最小压应力)力工况组合取值:

1.0D-1.0Fek-0.5*0.2 (1.0D+0.5L) = 0.9D-0.05L-1.0Fek

(四) 楼层位移角

(五) 楼层剪力

(六)隔震支座最大压应力、最大拉应力验算

选择对应的组合分别查看隔震支座罕遇地震的最大压应力、罕遇地震作用下隔震支 座最大拉应力以及重力荷载代表值下隔震支座的压应力值。

第二章 隔震结构直接设计法软件实现流程

(七) 隔震支座变形验算

选择对应的组合查看隔震支座罕遇地震作用下最大水平位移。

1 0 0 0	x64 -	盈建科建筑结构计算模块--¥JK-▲[4.0.0] - [C:\Users\HZF\De	esktop\隔震算例\隔震模型\1]	×5_ 문합()
		(15)以公告号記 死心力 工具術 開始(記): 延期(記): (現成): () () () () () () () () () () () () ()	artainit Sandynarth Sendin ficidity 1980	
⊕ ^{HDM=255.96} ≺385.	00	ID=18 HDM=256.09 <330.00	ID=24 HDM=255.98 <330.00	CONTR OBSER
ID=5 HDM=256.93 <385.	00	0=17 ⊖H0W=257.43 <385.00	10=23 ⊖H0M=257.30 <385.00	1.5型音 1.5=3=3=3=3=3=3=3=3=3=3=3=3=3=3=3=3=3=3=3
				田田田市 文本編出 文本 文本 文
× A B B A				●ut Ou2 Ou3 器形指示 又本報出

(八)隔震支座抗倾覆验算、隔震支座恢复力验算

1 0 0 0	x64 - 盈建科建筑结构计算模块YJK-k[4.0.0] - [C:\Users\UZF\Desktop\隔震算例\隔震模型\1]
授型荷板输入 前处理及计算	이 바이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이
用户波 人工波 地质波 工況足义 工況総	
导入 生成 近郊 自定义地震波 前处理	
	IsoOverturningCheckOut - UF#\$ - □ X
	文(11) 発展(5) 格式(5) 差別(5) 税助(5)
	隔離结构整体抗倾覆抽算报告
	通过验算印度则:抗绿覆力矩/倾覆力矩=安全条数≥1.1
	工況1: Wavename: ArtWave-RH2TG045,Tg(0.45) [0.0]+[COMB1]+[D1]
	福島県 移导 抗領電力矩/X 抗病電力矩/X 領電力距/X 倾電力距/Y 安全系数/X 安全系数/X 是否满足/X 是否满足/Y
	2 2 270375.00 4459081.00 193876.54 193876.54 13.77 23.00 満足 満足 3 2167990.00 35201181.50 166833.42 12.99 21.70 漢足 連足
	4 164246.38 2742554.75 11227482 11227482 146.3 24.43 満足 満足
	5 1118962/3 108300/80 7000380 7000380 1553 26.04 滴定 滴定 6 6047380.0 1009311.56 42484.66 14.24 23.77 滿足 滿足
	/ 335469.63 5001/8.19 16195.51 16195.51 20./1 34.59 满足 满足
	1.5/2: Wavename: ArtWave-RH2TG045,Tg(0.45) [0.0]+[COMB2]+[D]]
C\Users\HZP\Desktop\短责算例,随意	
C:\Users\HZF\Desktop\强责算例\强重 使带着致命入 前处理及计算	1997)- 至201494 金叶在亚 <mark>建设1995代码,</mark> 建造性进行分析 点性的分性处理 性质双合管系动 药应力 正常着 现在说计 就可说说计 能工资权计 网络哈什能工资 网络哈什能工资 网络哈什能工
Cr\Users/HZRDesktop\/改表語の/反応 使用ななか入 部の対応はな での対応がはま です の対応がはま	HELLINE BERNER CHEET BERNER A A A A A A A A A A A A A A A A A A A
C.(Users/HZR,Desktop/短期間の)/2時 DREATES A DREATES A RAME ALLE 日本 中人工度 RAME ALLE SRE LREX L SRE LREX L	
C(Users)H2R(Destato)/福田部(MR) C(Users)H2R(Destato)/福田部(MR) E(1):13:31112 E(1):13:311 E(1):13:311 E(1):13:31 E(1	
CULHerry HORDestop Hord Bayes Size State	
CUMentW2FDDesktopV28880428 DesktopV2882042 DesktopV2882 DesktopV2882 DesktopV28 DesktopV2 DesktopV2 DesktopV2 DesktopV2	
CULVertVIZP.Desktop.VERBBAXE REFERENCE Reference	
CULVersVUTADesktopVSEBBARS BURGENSEA	
CULVertVATP.Desktop.VSEBSIN/SE BALANCE VATP.Desktop.VSEBSIN/SE	
CUUHerryUZRDesktopUSEEB9V2E DESCRIPTION DESCRIP	
CUUsers VUR Desktop VIS BERNET	
COMPARTING Decktop (5000 00.000 COMPARTING DECKtop (5000 00.0000 COMPARTING DECKtop (5000 00.0000 COMPARTING DECKtop (5	
COURSENDED Desktop Matter Action Desktop Matter Action Desktop Matter Action Terrar Action Name Des 2000	
El CulterrivICP Desktop V2世紀日本 El CulterrivICP Desktop V2t El	
CUDerryHZP Desktop J2世紀日代2日 日本のないである。 日本のないでは、日本のないでは、日本のないでは、 日本のないでは、日本のないでは、 日本のない	

(九)隔震支座滞回曲线查看

评估每个隔震支座的耗能情况,滞回曲线越饱满耗能效果越好。

第二章 隔震结构直接设计法软件实现流程

(十)楼层顶点位移时程曲线

(十一)隔震支座耗能曲线

七、罕遇地震作用下弹塑性时程分析

对一些复杂的项目如果还需要考虑结构在大震下有可能进入弹塑性状态,就需要对 结构进行大震动力弹塑性时程分析,找到结构的薄弱部位对其加强以及进一步分析关键 构件的损伤程度等来判断是否能够实现大震可修的抗震目标。YJK 软件目前有两款动力 弹塑性分析软件,YJK-EP(隐式方法)和 Y-Paco(显式方法)两款软件,本项目选用 YJK-EP 进行大震弹塑性分析。为了节省时间本项目选用大震弹性时程分析所采用的1条 人工波进行分析计算。

(一) 弹塑性楼层地震剪力

(二) 弹塑性楼层弯矩

(三) 弹塑性层间位移角

(四)楼层顶点位移时程曲线

(五)隔震支座罕遇地震作用下滞回曲线

(六)罕遇地震下结构损伤云图

0 时刻构件损伤云图

1s 时刻构件损伤云图

	z64 - 量建利建筑结构计算模块YJK-A[4.0.0] - [C:\Users\HZF\Desktop\隔圆算例\隔圆模型\1]	윤 🖲 ☆ 🗇 🗕 🕫 ×
まの位 0000 まの位 0000 まの位 0000 まのの 0000		

10s 时刻构件损伤云图

终止 (30.02s)时刻构件损伤云图

(七) 隔震支座耗能曲线

八、输出隔震设计报告

10089888		x64 - 盈建科建筑结构计算模块YJK-A[4.0.0	0] - [C:\Users\HZF\Desktop\隔震算例\隔震模型\]	1
模型荷载输入 前处理及计算 设	计结果 弹性时程分析(新) 弹性时程分析 直接转	计分法时程 楼板及设备振动 预应力 工具箱	硼休设计 基础设计 施工图设计 预制构件施工图	网络构图 非线性计算 一件图形编辑 •
/° 🗴 🚾 🖸 🛄		平M 🛛 柱顶 🐨 電矩 🕅 🦾 第		5 D = 5 S = 4
设置 文本結果 文本New 构件 配筋简图 编号		☆V → 柱底 → 町方 三维显示 三维 → 匠 (位称 → 匠称		新進展 二十 文本 批量 隔离展 计算书 号出 配筋 ・ 文本 号田 ・ 論果 ・ ・ ・
设置 文本结果 编号	设计结果	「 本 他 内 力	※回 預組合内力等価値 模型切換 工」	
				周親展 支座应力 互座内力 隔親分析 開親展 五位約 及空形 編集分析
				10000 3000 ACC ACC ACC ACC ACC ACC ACC ACC ACC
	di+th#			
P) 🖻 lo 🚺 🖞 war 🛆 aar 🖭 🛴	a v≈ 1 = v≈ \$ # # 2 = 1	(x - M):	
28 7.5	48 22/ 04 EREE ++ 101 ((40 000			
	Ren. Non.	Bur, Ber, Ber,	Here, Here, Here,	
	BAUKEUT BAUKEU			2.6 ACS 855 X8
(月間)	公析报告参数			×
PHI/PH				~
	输出内容			
	☑工程概况	☑ 地震动输入	☑ 隔震层及隔震支座验算	
	□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□	□分部设计法分析结果	□☆会治明	
	☑ 隔震支座布署	☑ 直接设计法分析结果		
	La marca that			
	隔震模型路径			
	D:\客户模型\1模型		浏览(8)	N
	非隔震模型路径		A300 114	
	D:\客户模型\1模型\PD_SFT	K .	· 浏冶(B)	
	计算书	既张大小: A4 ~	生成报告取注	肖

北京盈	建科软件股份有限公司
FI -	2
14 2	C.
Ý 1音	工程概况 1
小子里 1.1	1
1.2	· 空中 1100
第2音	设计依据1
2.1	↓本工程隔震设计所依据的主要规范、图集:1
2.2	2 自然条件
	2.2.1 水平地震参数
	2.2.2 竖向地震参数
第3章	隔震支座布置1
3.1	」隔震支座参数统计1
3.2	2 隔震支座平面布置图1
第4章	地震动输入1
第5章	直接设计法分析结果1
5.1	「隔震支座等效刚度及等效阻尼系数
5.2	? 隔震与隔震模型的隔震层底部剪力比1
第6章	隔震层及隔震支座验算1
6.1	「隔震层验算1
	6.1.1 隔震层偏心率验算1
	6.1.2 隔震层抗风承载力验算1
	6.1.3 隔震层屈重比验算1
	6.1.4 隔震层总水平力验算1
	6.1.5 隔震支座验算1
第7章	隔震结构层间位移角1
7.1	」大震反应谱层间位移角1
第8章	基础的受力计算1
第9章	产品性能指标要求1
第10章	₫ 施工与维护1
第11章	◙ 本项目中隔震支座生产企业应提供以下证明材料1

九、隔震结构施工图设计及基础设计

直接用隔震模型进行结构施工图设计及基础设计。

第三章 隔震结构直接设计法算例

算例一:

一、工程概况

本工程地上 4 层,一层地下室,1~4 层层高 3.9m,房屋总高度 20.3m,采用层间隔 震,基本风压 0.6kN/m2(50 年),基本雪压 0.9kN/m2(50 年),抗震设防烈度 8 度 (0.3g),地震分组二组,场地类别二类,建筑抗震设防类别乙类。

计算模型

备注:本工程地下室设计考虑相应的地下室顶板,上支墩层板厚 160mm(新隔标 5.1.3),因此产生一个夹层空间,该空间净高需考虑其他专业净高要求,同时需满足隔 震支座更换、检修等操作空间。且需考虑该处地下室楼梯不为固接连接。

二、参数设置

1、前处理计算参数对应隔震层数及隔震层号确定:

十算控制信息	☑隔震 □ 減震	包络设计	
控制信息 刚度系数		大震计算模型 🗹 不屈服	☑弹性
二阶效应		大震地震影响系数最大值	0.9
分析水解奓颈 3.荷载信息	隔震层层号 2	周期折减系数 1 特征周期	0.5
基本参数 地震信息 地震信息	□ 備晨結何设计力法 直接设计 ~ 分部设计法 调整后水平向减震系教(β/Ψ) 1	不屈服 结构阻尼比(%)	5
目定义影响系数曲线 时域显式随机模拟法		 ● 主桜筑一 ○ 按材料区分 钢 	2
地震作用放大系数 性能设计	减震	型钢砼 5 混凝土	5
性能包络设计	減震结构设计方法 抗规小震法 ジ	连梁刚度折减系数	0.3
· 喃晨柳晨 安计信息		中梁刚度放大系数	1
5荷载信息 如此设计信自		☑考虑双向地震作用	-
构件设计信息 钢构件设计信息 9络设计 材料信息 材料参数	最大附加阻尼比 0.25 附加阻尼比折减系数 1 ▽考虑钢筋超强系数 1	 弾性 结构阻尼比(%) ●全楼统一 ○ 按材料区分 钢 	5
钢筋强度 中 下 室 信 夏	反应谱计算方法	型钢砼 5 混凝土	5
積组合 组合系数 组合表	○ 头振型分解反应谱法 减震隔震附加阻尼比算法 强制解耦 ~	连梁刚度折减系数 中梁刚度放大系数	0.6
自定义工况组合	(一支)派型力解决应 宿本	✓考虑双向地震作用	
	300m展701年月20日2 ○采用输入的等效线性属性 ● 迭代确定 ○自动采用弹性时程计算结果		
	承票隔票附加阻尼比算法 : 根据 《抗规》12.3.4 中提供的附加阻尼比计算方法利	印限制,软件采用等效线性化方法提供	了两种附加

2、隔震支座定义:

-- 🗆 X × ■ 连接单元定义 隔震支座设计参数 LRB700 LNR600 LRB600 LNR700 类型: 隔震支座 ▼ 设计参数 (带*号为必填项) 700 有效刚度KE 有效阻尼 非线性 刚度 kN/m,kN.m/rsdCE(kdN.s/m) K(kdN/m) 抗拉刚度 截面积 Kt(kN/m) A(m2) *有效直径(mm) 0 中孔直径(mm) ▼ U1 3.157e+00 0 ☑ 3.157e+00 315700 0.385 130 屈服力KY (kN)屈服后刚度比KYR *橡胶总厚度(mm) 14246 🔽 U2 1866 0 106 0.077 292 *支座+连接板总高(mm) 0 0.077 V3 1866 14246 106 一次形状系数 20 **R1** 0 0 5 *二次形状系数 0 R2 0 0 🕅 R3 0 ☑ 考虑附加弯矩作用 确定 取消 添加

第三章 隔震结构直接设计法算例

LRB700 参数设置

LRB700 LNR600	类型:	隔震支座		•				设计参数	(带*号为必填项)	
RB600 NB700	有	i 效 例 度 KE N/m kN m/m	有效阻尼	非线性	刚度	抗拉刚度	截面积		*有效直径(mm)	600
	 V1	2.515e+00	0		2.515e+00	251500	0.283		中孔直径 (mm)	O
		2 932				屈服力KY (k	N)屈服后	刚度比KYR	*橡胶总厚度(mm)	110
	📝 V2	932	0		0	0	0		*支座+连接板总高(mm)	245
	📝 V3	932	0.5		0	0	0		—次形状系数	20
	🕅 R1	0	0]					*一、为正分半至 **	5
	🕅 R2	0	0]					*	
	🕅 R3	0	0	1						
									☑考虑附加弯矩作用	

LNR600 参数设置

■ 连接单元定义								□ X	隔震支座设计参数	X
LRB700 LNR600 LRB600 LNR700	类型: 存 k	隔震支座 東效刚度KE N/m,kN.m/rs	有效阻尼 LdCE(LdX.s/m	▼ 非线性)	刚度 K(kkN/m)	抗拉刚度 Kt (kt)/m)	截面积 A(m2)	设计参数	(带*号为必填项) *有效直径(mm)	300
	🔽 V1	2.753e+00	0	V	2.753e+00	275300	0.283		中孔直径(mm)	0
						屈服力KY Ok	N)屈服后降	刚度比KYR	*橡胶总厚度(mm)	110
	🔽 V2	1724	0		12392	90	0.077		*支座+连接板总高(mm)	245
	🔽 V3	1724	0		13392	90	0.077		一次形状系数	20
	🕅 R1	0	0							5
	🕅 R2	0	0						*	č
	🕅 R3	0	0							
添加	删除	〕 [应用		打开	数据库 ↓	 Giù	定][取消		取消

LRB600 参数设置

)	类型:	隔震支座						设计参数	(带*号为必填项)	
	¶ k	与效刚度KE dN/m,kdN.m/ra	有效阻尼 dCE (kdN. s/m	非线性	刚度 K(kkN/m)	抗拉刚度 Kt (kkN/m)	截面积 A(m2)		*有效直径 (mm)	700
	📝 V1	2.818e+00	0		2.818e+00	281800	0.385		中孔直径(mm)	0
					J	屈服力KY (k	N)屈服后P	刚度比KYR	*橡胶总厚度(mm)	130
	🔽 V2	1077	0		0	0	0		*支座+连接板总高(mm)	292
	🔽 V3	1077	0		0	0	0		「た正分半変粉	20
	🕅 R1	0	0]						E
	🕅 R2	0	0						*次形状条数	3
	🔲 R3	0	0							
	K 3	0	U	1 ₂					☑ 考虑附加弯矩作用	

第三章 隔震结构直接设计法算例

LNR700 参数设置

隔震垫平面布置图

三、反应谱计算结果

1)反应谱隔震层简图:

第三章 隔震结构直接设计法算例

2) 支座等效刚度及阻尼:

3) 输出"偏心率"、"抗风验算"、"屈重比"、"总水平力"文本结果:

			elelelelelelelelelelelelelelelelelelel	endersensensensensensensensensensensensensens			
			rm,z.p Adalalalalalalalalalala	s Million - F 102,77		-	
计算依据	: 根据《建	筑隔震设计	+标准≥GB/T5140	8-2021第4.6.2-4	4条款,隔震层降	则度中心与质量中间	〕 宜重合,
设 防烈员 方回	肥富作用ト 長号	凹偏心率/ 塔号	▶且入于3% 重心坐标(m)	刚心坐标(m)	偏心距(m)	弹力半径(m)	偏心率(%)
XD	3	1	43.0713	43.0082	0.0168	25.7791	0.2447
阿	3	1	22.1548	22.1717	0.0631	25.4073	0.0662

4) 大震反应谱拉、压应力及单工况位移:

5) 大震反应谱的内力及变形结果:

弹	生时程分析(新)	弹性时程分	析 直接积分法	財程	接板及设备振动	预应力	工具箱 截	朱设计 書	机设计 8	訂 图设 计	预制构	件施工图	粘构图 =	非线性计	算二	全性图形编		-	
自压比	→ 常能度	115	边缘 North 梁N	【柱	顶 1000 1000	NOT	AT S LET	1 质心	☆ 底层	2	隔壊	I	同間		X				
	_	相合語 二	191年 (1111)			二個男子		「 振切	CR	施值进	LE Idet	· · · · · · · · · · · · · · · · · · ·		北景	西部屋	日日	BHI I		• •
GRAFE	平 柱中切	製造	验算 ^{型V}	世	10 10 10 10 10	-	位移	日结果	日常			工具配防	文本	导圈	结果	~	-		*箕3层(标准层3)(隔离层)
	设计结果		标	医内力	梁内力包络	三维显示	变形的	1	预组合内力	等值线	模型切换	IA	工程对比	导致	隔観层	计算书	5954		
		j M M V V V N T	/£%4 24 25 25 25 25 24 23 23 23 23 24 23 24 23 24 23 24 23 24 23 24 23 24 25 24 25 24 25 26 26 26 26 26 26 26 26 26 26			K	<u>実産編号:</u> 38 M:: 0.00 My: 0.00 V:: 330.81 V:: −9.87 N: 36.29 T: 0.00					大倉最号: 42 Mx: 0.00 My: 0.00 Vx: 330.75 Vy: -13.77 N: 252.78 T; 0.00	E	史 M W V: V N: T:	崖嶺号: 4 x: 0.00 y: 0.00 c: 223.95 c: 211.4(c: 107.87 0.00	4 5)	大都 Mx: My: Vx: Vy: N: T: T:	1468: 48 0.00 0.00 359.66 -20.61 -6.33.49 0.00	田奈内容 ショ店内 の 支査支形 ジュ店内 の 支査支形 細会気別 単工尺 ・ ジェルス ・ ジェルス ・ ジェルス ・ ジェルス ・ ジェルス ・ ジェルス ・ ・ ジェルス ・
			iæ∰8: 33 x: 0.00 y: 0.00 x: 255.21 y: −4.92 : −11.01 0.00 y: 0.00 x: 0.53.78 y: −4.92 : −10.38 -0.00			(★煮煸号: 37 ★煮煸号: 37 Mx: 0.00 My: 0.00 Vc: 255.20 Vy: -8.20 N: 4.77 T: 0.00 #: 4.77 #: 6.00 Mx: 0.00 Mx: 0.00 My: 0.00 Vc: 253.76 My: 0.00 Vc: 253.76 N: -8.21 N: -8.09 T: 0.00					支援優学: 41 Mx: 0.00 Vx: 221.18 Vy: -9.99 T: -0.00 支度優号: 40 Mx: 0.00 My: 0.00 Vx: 253.90 My: 0.00 T: 0.00	[受 M M V: V: V: N: T:	産績号: 4. x: 0.00 y: 0.00 c 221.37 y: −11.58 : 178.17 -0.00	3	● 支倉 M×: V×: V×: V×: V×: V×: V×: V×: V	編号: 47 : 0.00 : 226.88 : -17.55 -767.58 0.00 室職号: 46 : 0.00 : 20.00 : 224.64 : -17.75 -565.78 0.00	Tested: # Tested:

6) 对比隔震中震模型及中震非隔震模型下的楼层底部剪力:

	隔震	模型X向	非隔倉	夏模型X向		
Floor	Fx	▼x (分塔剪重比)	Fx	Vx (分塔剪重比)	剪力比值	
	(kN)	(kN)	(kN)	(kN)		
8	247.54	247.54	1937.1	1937.1	0.127788963	
7	2656.92	2895.8	13809.95	15119.89	0.191522557	
6	2682.68	5527.59	12146.54	24532.24	0.225319416	
5	2660.02	8088.06	11193.56	31374.75	0.257788827	
4	2727.53	10674.7	8588.83	35845.85	0.297794584	
3	3230.36	13718.46	6149.53	37878.61	0.362169045	
2	1.06	13719.46	284. 57	37973.57	0.361289708	
1	2.36	13721.71	667.02	38199.8	0.359208949	
	隔震	模型Y向	非隔角	夏模型Y向		
Floor	Fy	Vy (分塔剪重比)	Fy	Vy(分塔剪重比)	剪力比值	
	(kN)	(kN)	(kN)	(kN)		
8	250.76	250. 76	2147.05	2147.05	0.116792809	
7	2632.2	2871.79	13971.37	15300.86	0.187688143	
6	2646.65	5461.71	12556.19	24383.52	0.22399186	
5	2622.95	7979. 74	11487.72	31074.88	0.256790694	
4	2692.33	10524.04	8861.91	35879.91	0.293312887	
3	3194.34	13518.71	8930.54	38711.24	0.349219245	
2	1.89	13520.44	534.96	38898.12	0.34758595	
1	9.69	13529.36	3047.76	40044. 21	0.33786058	

7) 依据新隔标 6.1.3-2: 隔震结构底部剪力比不大于 0.5 时,上部结构可按本地区设防烈 度降低 1 度确定抗震措施。

(本工程上支墩层底部剪力比为 0.3622,故取上部结构降低 1 度确定抗震措施。) 8)对于本节第 4 条拉压应力的反应谱大震验算,需注意需结合新隔标 6.2.1 条附录:

此时需要补充模型:即拷贝隔震模型,对应地震作用考虑竖向地震后查看相应的反应谱 隔震拉压应力验算,如若在时程分析里增加组合验算拉压应力,则不需要拷贝模型。

四、时程计算结果

1) 选波:

Northridge-01_NO_959,Tg(0.47)

ArtWave-RH3TG045,Tg(0.45)

2) 添加组合后时程分析:

隔震单元的滞回曲线:

能量图:

隔震支座时程下的拉压应力:

第世封握分析(新) 第世封屆分析 一一 日 5.点变形 植局结果 连接单元 能量曲线 高处理	■接册分法封理 接板及设备等动 预定力 ↓ ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●	1 工具箱 褐体设计 莱姆设计 施工师	翻設計 预制物件施工器 网络构图	非线性计算 二维图形编辑 G	
Cate 27 4700 Cate 27 4700 ⊖ Direction 4100 ⊖ Direction 4100 ⊖ Direction 4100 ⊖ Direction 4100	0 0 0 0 0 0 0 0 0 0 0 0 0 0	0:39.85.47.00 Cole:167.42.00 (Star:167.42.00 (Star:167.42.00	C342-78-4200 C342-433-2400 C124e-0.00-41.00 C124e-0.00-41.00	2-44 00 172 00 39 - 50 72 00 39 - 50 72 00 39 - 50 100 100 100 39 - 50 100 100 100	● 単工名 も知道 日本1100-45(日本5)の (1) 日本1100-45(日本5)の (1) 日本1100-45(日本5)の (1) 日本1100-45(日本5)の (1) 日本1100-45)(1) (1) 日本1100-45 (1) (1) (1) 日本110-45 (1) (1) (1) (1) 日本110-45 (1) (1) (1) (1) 日本110-45 (1) (1) (1) (1) (1) 日本110-45 (1) (1) (1) (1) (1) 日本110-45 (1) (1) (1) (1) (1) 日本110-45 (1) (1) (1) (1) (1) (1) 日本110-45 (1) (1) (1) (1) (1) (1) 日本110-45 (1) (1) (1) (1) (1) (1) (1) 日本110-45 (1) (1) (1) (1) (1) (1) (1) (1) 日本110-45 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
- - - - - - - - - - - - - -	0	0=37 15 47 05 GM=9.5 47 00 (SM=9.5 47 00 (SM=67 7 02.00 (SM=67 7 02.00 (0-4 	2-4 3-5 3-5 3-5 3-5 3-5 3-5 3-5 3-5	1.70倍合 120倍合 120倍の420月35日の。 マー マー 日本語を認知症力 マー マー 日本語を認知症力 マー マー 日本語を定 マー ロー ロー
0=27 C31=10.46 <12.00 C31=11.34 <25.00 C31=11.34 <25.00 C31=0.00 <1.00	0 0 0 0 0 0 0 0 0 0 0 0 0 0	(0=35 (50+919,-12,00 (514+12,15,45,00 ⊕ (544+0,00)<(1,00	0=39 C00=9.58 <12.00 C01=12.65 <25.00 €159=0.000 <1.00	(0=45 (30=4, 30, 42,00 (30=5, 33, 42, 00 (30=5, 33, 42, 00 (30=5, 33, 42, 00) (31, 10)	■ 最大米平位移

第三章 隔震结构直接设计法算例

1	A	В	С	D	E
1	隔震支座ID	最大初始压应	最大压应力()	最大拉应力(MPa	1)
2	1	4.368	6.872	0	
3	2	7.219	11.426	0	
4	3	5.55	9.115	0	
5	4	2.887	4.931	0	
6	5	6.859	7.797	0	
7	6	5.051	6.534	0	
8	7	9.838	12.628	0	
9	8	8.678	10.011	0	
10	9	9.533	10.925	0	
11	10	7.438	9.551	0	
12	11	9.506	12.443	0	
13	12	8.97	9. 939	0	
14	13	9.216	9.874	0	
15	14	9.804	11.513	0	
16	15	9.633	12.49	0	
17	16	9.024	10.002	0	
18	17	8.937	9.559	0	
19	18	9.384	11.207	0	
20	19	1.991	4.171	0	
21	20	10.46	11.442	0	
22	21	8.665	10.453	0	
23	22	7.518	8.414	0	
24	23	7.923	9.898	0	
25	24	8.273	8.464	0	
26	25	6.223	7.567	0	
27	26	1.992	3.505	0	
28	27	10.463	11.338	0	
29	28	8.896	10.661	0	
30	29	8.306	9.469	0	
31	30	9.221	11.359	0	
32	31	9.456	12.353	0	
33	32	9.158	10.174	0	
34	33	9.688	10.246	0	
35	34	10.664	12.498	0	
36	35	9.19	12.15	0	
37	36	8.774	9.761	0	
38	37	9.185	9.794	0	

隔震支座位移:

建生时程分析(新) 建生时增分析	高級部分分約122 株板及设备等因 预放 ↓ · · · · · · · · · · · · · · · · · · ·	力 工具箱 關係設计 基础设计 接丁醛设计	化杨斯特斯丁酸 杨药杨酸 重线性计算 二碘酸杨酮酸	•
	ID=38 HDM=326.27<330-00	10=42 H0M=325.85 <330.00	ID=48 HDM=326.63 <330.00 HDM=325.34 <385.00	● 単正交 包括値 対理工ス 対理工ス 「たいでのその1000-45,1g0-43) E00・ (マロ、Tanared 5,1g0-43) E00・ (マロ、Tanared 5,1g0-33) E00・ (マロ、Tanared 5,1g0-33) F00 (マロ、Tanared 5,1g0-33) F00 (マロ、Tanared 5,1g0-43) F00 - マロ、Tanared 5,1g0-43) F00 - マロ - マロ
	ID=37 HDM=327.32 <385.00	ID=41 HDM=327.74 <330.00	D=43 HDM=327.40 <330.00 HDM=326.92 <330.00	図最大臣应力 33 MPa 図最大拉应力 1 MPa 医脱還示 文本第出 罕遇地震水平位移 図最大水平位移
	1D=36 HDM=327.69-<385.00	D=40 HDM=327.61 <385.00	10=46 H0M=327.39 <330.00	田則智示 文本等出 平遥地震内力間 万向(局部坐作系) ④ U1 ● U2 ● U3 四則覚示

	A	В	С
1	隔震支座II	最大水平位	.移(mm)
2	1	325.639	
3	2	327	
4	3	326.756	
5	4	325.182	
6	5	327.216	
7	6	326. 584	
8	7	326. 518	
9	8	327.598	
10	9	327.441	
11	10	325.752	
12	11	326. 527	
13	12	327.654	
14	13	327.286	
15	14	326.254	
16	15	326. 557	
17	16	327.648	
18	17	327.259	
19	18	326.253	
20	19	326.934	

抗倾覆验算:

5) 隔震标准 4.6.9 条规定隔震建筑需要进行整体抗倾覆验算,抗倾覆验算应按罕遇地震 作用计算倾覆力矩,并应按上部结构重力荷载代表值计算抗倾覆力矩,抗倾覆力矩与倾 覆力矩之比不应小于 1.1。

Press and a second	and the second second second								
IsoOn	verturningCh	eck - 记事本							
文件(F)	编辑(E) 格	式(O) 查看(V) 帮助(H)							
*****	******	******	隔震结构	*************************************	******	******	******	******	******
通过验	算的原则:	抗倾覆力矩/倾覆力矩=安全	全系数≥1.1						
工况1:	Wavenane	: ArtWave-RH3TG045, Tg(0.45) [0.0]+[COMB1]+[D	I]					
隔震层	楼号 3 4 5 6 7 8	抗 頓覆力拒/x 931803.75 527244.31 349008.06 175839.23 13985.83	抗頻薯力拒/r 3917552.25 2995523.50 2216678.50 1467325.38 739277.81 58800.57	倾覆力拒/ X 182509.00 155751.66 96097.52 50082.11 18283.98 1151.03	倾覆力矩/y 182509.00 155751.66 96097.52 50082.11 18283.98 1151.03	安全系数/X 5.11 4.57 5.49 6.97 9.62 12.15	安全系数/Y 21.46 19.23 23.07 29.30 40.43 51.09	是否满足/X 满足 满足 满足 满足 满足 满足 满足 满足 满足 满足	是否满足/Y 满足 满足 满足 满足 满足 满足 满足
工况2:	Wavenane	: ArtWave-RH3TG045, Tg (0.45) [0.0]+[COMB2]+[D	1]					
隔震层	楼号 3 4 5 6 7 8	抗倾覆力矩/x 931803.75 712495.25 527244.31 349008.06 175839.23 13985.83	抗與覆力拒/Y 3917552,25 299523,50 2216678,50 1467325,38 739277,81 58800,57	倾覆力矩/X 175632.14 153415.97 78797.64 24360.84 8676.30 1153.27	倾覆力矩/y 175632.14 153415.97 78197.64 24360.84 8676.30 1153.27	安全系数/X 5.31 4.64 6.69 14.33 20.27 12.13	安全系数/Y 22.31 19.53 28.13 60.23 85.21 50.99	是否满足/x 满足 満足 満足 満足 満足 満足 満足 満足 満足 満足 満足 満足 満足 満足	是否满足/Y 满足 满足 满足 满足 满足 满足 满足 满足 满足
工况3:	Wavenane	: ArtWave-RH3TG045, Tg(0.45) [0.0]+[COMB3]+[D	1]					
隔震层	楼号 3 4 5 6 7 8	抗頓覆力拒/x 931803.75 712495.25 527244.31 349008.06 175839.23 13985.83	抗頻叢力拒/Y 3917552.25 299523.50 2216678.50 1467325.38 739277.81 58800.57	倾覆力矩/ X 174604.31 153068.42 76214.69 20525.21 7262.26 1155.11	倾覆力拒/y 174604.31 153068.42 76214.69 20525.21 7262.26 1155.11	安全系数/x 5.34 4.65 6.92 17.00 24.21 12.11	安全系数/Y 22.44 19.57 29.08 71.49 101.80 50.90	是否满足/X 满足 満足 満足 満足 満足 満足 満足 満足 満足 満足	是否满足/Y 满足 满定是 满定是 满定是 满足是
工况4:	Wavenane	: ArtWave-RH3TG045, Tg (0.45) [0.0]+[COMB4]+[D	1]					
隔震层	楼号 3 4 5 6 7 8	抗 候覆力拒/ X 931803.75 712495.25 527244.31 349008.06 175839.23 13985.83	抗頻鬱力拒/Y 3917652,25 2995523,50 2216678,50 1467325,38 739277,81 58800,57	傾覆力拒/x 85221.11 78243.15 28864.21 0.00 0.00 658.45	倾覆力拒/Y 85221.11 78243.15 28864.21 0.00 0.00 658.45	安全系数/X 10.93 9.11 18.27 1.#J 1.#J 21.24	安全系数/Y 45.97 38.28 76.80 1.#J 1.#J 89.30	是否满足/x 满足 满足 满足 满足 满足 满足 滿足 滿足 滿足 滿足	是否满足/Y 满足 满足 满足 满足 满足 满足

(抗倾覆验算文本结果)

6) 隔震标准 4.6.1 条第 4 款规定,隔震层应进行恢复力验算,隔震层在罕遇地震作用下

的水平最大位移所对应的恢复力,不宜小于隔震层屈服力与摩阻力之和的 1.2 倍;

IsoRecover	ForceCheck.Out - 记事	本				
文件(F) 编辑(E	E) 格式(O) 查看(V)	帮助(H)				
****	lacioloxxxxxxxxxxxxx	*************************************	***************************** 〔力水平验算报告		laalakaka ka k	kakakakakakakakakaka
通过验算的原	Q. 隔震层最大的	立移对应的恢复力≥	1.2*隔震层屈服力(KN)		
工况1: ∀aver	name: ArtWave-RH	1TG045, Tg(0.45) [0.0]+[COMB1]+[M]			
隔震层号 4	恢复力/X 1390.042	1.2*屈服力/X 746.880	恢复力/Y 0.000	1.2*屈服力/Y 746.880	是否满足/X 满足	是否满足/Y 不满足
工祝2: Waver	name: Art∛ave-RH	1TG045, Tg(0.45) [D.0]+[COMB2]+[M]			
隔震层号 4	恢复力/X 1390.280	1.2*屈服力/X 746.880	恢复力/ዣ 0.000	1.2*屈服力/Y 746.880	是否满足/X 满足	是否满足/Y 不满足
工况3: Waver	name: ArtWave-RH	1TG045, Tg(0.45) [90.0]+[COMB1]+[M]			
隔震层号 4	恢复力/X 0.000	1.2*屈服力/X 746.880	恢复力/Y 1390.042	1.2*屈服力/Y 746.880	是否满足/X 不满足	是否满足/Y 满足
工况4: ¥aver	name: Art∛ave-RH	1TG045, Tg(0.45) [90.0]+[COMB2]+[M]			
隔震层号 4	恢复力/X 0.000	1.2*屈服力/X 746.880	恢复力/Y 1390.280	1.2*屈服力/Y 746.880	是否满足/X 不满足	是否满足/Y 满足

(恢复力验算文本结果)

注意事项:

1、 对于层间隔震时应考虑楼梯不应采用固接连接方式;

2、 对于层间隔震由于拉高了室内外高差,门斗处的踏步需考虑避开隔震沟;

3、 对于地下室采用窗井时需注意盖板与隔震沟侧壁的软连接处理;

4、 对于采用电梯时需考虑电梯底坑的处理措施。

算例二:

一、工程概况

本工程抗震设防烈度 8 度,设计基本地震加速度峰值为 0.30g,设计地震分组第三组, II 类场地,场地特征周期 0.45s。采用框架结构形式,地上 2 层,建筑结构高度 7.7m, 宽 9.3m,高宽比 0.828。属于重点设防类,乙类建筑。

表 4-1 有铅芯隔震支座力学性能参数

类别	符号	单位	LRB600-II
使用数量	Ν	套	12
第一形状系数 S1	S1	/	24.3
第二形状系数 S2	S2	/	5.41
竖向刚度	Kv	kN/mm	2300
等效水平刚度	Var	1.N/mm	1 79(1000/)
(剪应变)	Keq	KIN/IIIII	1.78(100%)
屈服前刚度	Ku	kN/mm	15.77
屈服后刚度	Kd	kN/mm	1.21
屈服力	Qd	kN	63
橡胶层总厚度	Tr	mm	111
支座总高度	Н	mm	208

类别	符号	单位	LNR500-II
使用数量	Ν	套	7
第一形状系数	S1	/	21.5
第二形状系数	S2	/	5.38
竖向刚度	Kv	kN/mm	1800
等效水平刚(剪应变)	Kh	kN/mm	1.01 (100%)
橡胶层总厚度	Tr	mm	93
支座总高度	Н	mm	187

隔震支座编号及布置图

验算隔震结构的偏心率

隔震结构的偏心率是隔震层设计中的一个重要指标,日本和台湾规范明确规定隔震 系统的偏心率不得大于 3%。本报告在进行隔震层设计时,也对隔震系统的偏心率进行了 计算,计算结果为:X方向 0.11%,Y方向 1.11%,详见表 5.1。

表 5.1 隔震结构的偏心率

方向	层号	塔号	重心坐标(m)	刚心坐标(m)	偏心距(m)	弹力半径(m)	偏心率(%)
Х	2	1	15.8324	15.8449	0.1230	11.1260	0.1121
Y	2	1	4.3075	4.1845	0.0125	11.1274	1.1050

二、验算隔震支座压应力

荷载组合为: 1.0 恒载+0.5 活载,各个支座压应力见表 6.1,由表可知,支座压应力 最大值为 5.67Mpa,乙类建筑隔震支座在重力荷载代表值作用下的压应力限值为 12MPa, 支座满足要求。

支座编号	1	2	3	4	5	6	7	8	9	10
支座型号	LRB 600	LNR 500	LNR 500	LNR 500						
压应力 (MPa)	3.26	3.1	3.38	3.94	4.1	2.04	3.64	4.72	5.67	3.02

第三章 隔震结构直接设计法算例

支座编号	11	12	13	14	15	16	17	18	19	
支座型号	LRB 600	LNR 500	LNR 500	LRB 600	LRB 600	LRB 600	LNR 500	LNR 500	LRB 600	
压应力 (MPa)	3.62	2.64	2.63	3.04	3.42	3.55	4.81	5.49	2.06	

三、隔震层抗风承载力验算

根据《新隔标》第4.6.8条,由隔震层抗风装置和隔震支座屈服力设计值共同构成的 隔震层抗风承载力设计值应不小于风荷载作用下隔震层水平剪力标准值的1.4倍。隔震 层必须具备足够的屈服前刚度和屈服承载力,以满足风荷载和微振动的要求。如下按规 范要求,进行隔震层抗风承载力验算:

 $\gamma_{w}V_{wk} \leq V_{Rw}$, \square

Vwk-X(kN)	Vwk-Y(kN)	Vrw-X(kN)	Vrw-Y(kN)	Res-X	Res-Y	是否 满足
76.32	231.69	756	756	76.32*1.4 < 756.00	231.69*1.4 < 756.00	满足

式中:

V_{Rw}——抗风装置的水平承载力设计值。由抗风装置和隔震支座水平屈服力设计值共同组成;

^γ_w——风荷载分项系数,取1.4;

Vwk——风荷载作用下隔震层的水平剪力标准值。

四、设防地震(中震)分析

应《新隔标》第4.2.2-1条要求,隔震结构的自振周期应根据不同地震作用烈度下的 支座水平位移确定,可采用振型分解反应谱法结合迭代计算确定。同时根据规范条文说 明 4.3.2 条,《新隔标》中采用的振型分解反应谱法默认是基于考虑阻尼矩阵的复振型分 解反应谱法,以保证隔震层大阻尼比情况下计算结果的准确性。现使用 YJK 软件提供的 基于复振型分解反应谱法进行自动迭代计算的功能,计算出隔震前(柱底铰接处理)与 隔震后结构的自振周期,在表 9 中给出。此外,《叠层橡胶支座隔震技术规程》规定: 隔震房屋两个方向的基本周期相差不宜超过较小值的 30%。

由表 4.1 可知,采用隔震技术后,结构的周期明显延长,且满足相关规定要求。

振型	YJK 隔震前	YJK 隔震后	两方向差值(%)
1	0.3874	1.6062	
2	0.3866	1.6011	0.3
3	0.3302	1.5288	

表 4.1 YJK 模型隔震前后结构的周期

基于复振型分解反应谱法结合迭代计算得出的设防地震下楼层剪力与隔震前结构 (柱底铰接处理)进行对比,得出隔震后/前结构的底部剪力比,进而确定上部结构的抗 震措施。

由表 4.2 分析得到隔震层以上结构隔震前后,结构底部剪力比的最大值为 0.32,据 《新隔标》第 6.1.3-2 条,隔震后结构与隔震前结构底部剪力比不大于 0.5 时,上部结构 可按设防烈度降低 1 度确定抗震措施。因此,上部结构框架的抗震等级由一级降为二级。

表 4.2 结构层剪力比计算结果

		X 向剪力		Y向剪力			
一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一	非隔震(kN)	隔震(kN)	剪力比	非隔震(kN)	隔震(kN)	剪力比	
5	895.44	153.77	0.17	858.95	152.31	0.18	
4	4652.2	1162.27	0.25	4685.71	1138.99	0.24	
3	6991.24	2207.51	0.32	7158.73	2158.64	0.30	
隔震支座层							

89

表 4.3 中设防地震下上部结构最不利层间位移角为:X向:1/1014;Y向:1/595, 二者均满足《新隔标》表 4.5.1 中规定的限值要求。

表 4.3 结构层间位移角计算结果

	X 向	Y 向			
一 一 一 云	层间位移角	层间位移角			
5	1/1762	1/2098			
4	1/983	1/1000			
3	1/688	1/655			
隔震支座层					

五、时程分析补充验算

5.1 时程分析

根据《新隔标》4.1.3-3条,对于房屋高度大于 60m,不规则建筑,或隔震层支座、 阻尼装置及其他装置的组合复杂隔震建筑,需在反应谱分析的基础上采用时程分析进行 校核。同时根据 4.1.3条对应条文说明,时程分析作为补充计算,主要针对计算结果的隔 震层和上部结构的剪力和层间位移进行复核。

5.2 地震动时程选取

根据《新隔标》4.1.3 条,每条地震加速度时程曲线计算所得的结构底部剪力不应小 于振型分解反应谱计算结果的 65%,多条时程计算的结构底部剪力的平均值不应小于振 型分解反应谱法计算结果的 80%。同时为了确保地震波选择的严谨性,参照《建筑抗震 设计规范(GB50011-2016)》第 5.1.2 条规定:采用时程分析法时,应按建筑场地类别 和设计地震分组选用实际强震记录和人工模拟的加速度时程,其中实际强震记录的数量 不应少于总数的 2/3,多组时程的平均地震影响系数曲线应与振型分解反应谱法所采用的 地震影响系数曲线在统计意义上相符。

本工程选取了实际5条强震记录和2条人工模拟加速度时程,7条时程曲线如图5.2.1 所示,7条时程反应谱和规范反应谱曲线如图5.2.2所示,选取的各条时程波信息在表

90

5.2.1 中给出,隔震前结构的基底剪力对比结果分别如表 5.2.2 所示。

13时37分,人工波2_Y方向加速度时程曲线

CapeMendocino_NO_3749,TG(0.50)_X方向加速度时程曲线

时间(s)

CapeMendocino_NO_3749,TG(0.50)_Y方向加速度时程曲线

Chi-Chi_Taiwan-06_NO_3431,TG(0.52)_X方向加速度时程曲线

Chi-Chi_Taiwan-06_NO_3431,TG(0.52)_Y方向加速度时程曲线

时间(s)

时间(s)

Gilroy_NO_2015,Tg(0.50)_Y方向加速度时程曲线

时间(s)

SanFernando_NO_55,TG(0.57)_X方向加速度时程曲线

时间(s)

SanFernando_NO_55,TG(0.57)_Y方向加速度时程曲线

时间(s)

96

时间(s)

地震波编号及全称如下(后文如未特殊声明,均按此序号对地震波排序):

表 5.2.1 地震波编号及全称

地震波编号	时程全程
R1(地震波 1)	13时37分,人工波2
T1(地震波 2)	CapeMendocino_NO_3749,TG(0.50)
T2(地震波 3)	Chi-Chi_Taiwan-06_NO_3431,TG(0.52)
T3(地震波 4)	Gilroy_NO_2015,TG(0.50)
T4(地震波 5)	Gilroy_NO_2015,Tg(0.50)
T5(地震波 6)	SanFernando_NO_55,TG(0.57)
R2(地震波 7)	aa 人工波 1

《抗规》5.1.2 规定:输入的地震加速度时程曲线的有效持续时间,一般从首次达到 该时程曲线最大峰值的10%那一刻算起,到最后一点达到最大峰值的10%为止;无论是 实际的强震记录还是人工模拟波形,有效持续时间一般为结构基本周期的(5~10)倍。 详细情况见下表:

地震波编号	第一次达到 该时程曲线 最大峰值 10%对应的 时间(S)	最后一次达 到该时程曲 线最大峰值 10%对应的 时间(S)	有效持续时 间(S)	结构第一周 期(S)	比值
R1 (地震波 1)	1.254000	27.778000	26.524000	1.606	16.51
T1 (地震波 2)	4.055000	23.550000	19.495000	1.606	12.14
T2 (地震波 3)	1.045000	46.985000	45.940000	1.606	28.60
T3 (地震波 4)	0.010000	37.345000	37.335000	1.606	23.24
T4 (地震波 5)	0.030000	42.985000	42.955000	1.606	26.74
T5 (地震波 6)	0.185000	25.255000	25.070000	1.606	15.61
R2(地震波 7)	1.140000	27.704000	26.564000	1.606	16.54

工况		反应谱	R1	R2	T1	T2	T3	T4	T5	时程平均
剪力	Х	16186	13773	15282	15153	15465	11593	10737	12376	13483
(kN)	Y	15067	11447	13335	12890	13085	11288	11984	11520	12221
比例	Х	100	85	94	94	96	72	66	76	83
(%)	Y	100	76	89	86	87	75	80	76	81

表 5.2.2 隔震前结构的基底剪力对比结果

注: 1、比例为个各时程分析与振型分解反应谱法得到的结构基底剪力之比。

图 5.2.2 地震波反应谱和规范谱对比(隔震模型)

《抗规》规定:多组时程波的平均地震影响系数曲线与振型分解反应谱法所用的地 震影响系数曲线相比,在对应于结构主要振型的周期点上相差不大于 20%。

由上图可知,各时程平均反应谱与规范反应谱满足要求。

5.3 抗倾覆分析

根据《新隔标》第4.6.9-2条规定,隔震结构应进行罕遇地震作用下的抗倾覆验算, 由上部结构重力代表值计算的抗倾覆力矩与罕遇地震下倾覆力矩之比不应小于1.1。

[况1:	Wavenar	me: 13时37分,人工	波2 [0.0]+[COMB1]	+[DI]						
幕震层	楼号	抗倾覆力矩/X	抗倾覆力矩/Y	倾覆力矩/X	倾覆力矩/Y	安全系数/X	安全系数/Y	是召	S满足/X 是	否满足/Y
2	2	104282.34	264408.78	24546.90	24546.90	4.25	10.77	满足	满足	
	3	66102.41	167600.86	17537.73	17537.73	3.77	9.56	满足	满足	
	4	33931.20	86031.49	6492.59	6492.59	5.23	13.25	满足	满足	
	5	4311.13	10930.36	693.67	693.67	6.21	15.76 漳	起	满足	
濃层	楼号	抗倾覆力矩/X	抗倾覆力矩/Y	·[[5]] 倾覆力矩/X	倾覆力矩/Y	安全系数/X		是召	·满足/X 是	否满足/Y
	楼号 2 3 4	抗倾覆力矩/X 104282.34 66102.41 33931.20	抗倾覆力矩/Y 264408.78 167600.86 86031.49	倾覆力矩/X 24021.44 15762.79 4432.17	倾覆力矩/Y 24021.44 15762.79 4432.17	安全系数/X 4.34 4.19 7.66	 安全系数/Y 11.01 10.63 19.41 	一 是召 满足 满足 满足	満足/X 是 満足 満足 満足 満足	否满足/Y
i震层 2	楼号 2 3 4 5	抗倾覆力矩/X 104282.34 66102.41 33931.20 4311.13	抗傾覆力矩/Y 264408.78 167600.86 86031.49 10930.36	倾覆力矩/X 24021.44 15762.79 4432.17 681.30	倾覆力矩/Y 24021.44 15762.79 4432.17 681.30	安全系数/X 4.34 4.19 7.66 6.33	ご 安全系数/Y 11.01 10.63 19.41 16.04 済	是否 满足 满足 满足 满足	満足/X 是 満足 満足 満足 満足 満足	
高震层 2 [] [] [] 二况3:	楼号 2 3 4 5 Wavenar	抗倾覆力矩/X 104282.34 66102.41 33931.20 4311.13 me: 13时37分,人工	抗倾覆力矩/Y 264408.78 167600.86 86031.49 10930.36 波2 [0.0]+[COMB3]	倾覆力矩/X 24021.44 15762.79 4432.17 681.30 +[DI]	倾覆力炬/Y 24021.44 15762.79 4432.17 681.30	安全系数/X 4.34 4.19 7.66 6.33	安全系数/Y 11.01 10.63 19.41 16.04 算		満足/X 是 満足 満足 満足 満足 満足 満足 満足 満足 満足 満足	
二次3: 二派震层 二次3: 二派震层	楼号 2 3 4 5 Wavenar 楼号	抗倾覆力矩/X 104282.34 66102.41 33931.20 4311.13 me: 13时37分,人工 抗倾覆力矩/X	抗倾覆力矩/Y 264408.78 167600.86 86031.49 10930.36 波2 [0.0]+[COMB3] 抗倾覆力矩/Y	倾覆力矩/X 24021.44 15762.79 4432.17 681.30 +[DI] 	倾覆力垣/Y 24021.44 15762.79 4432.17 681.30	安全系数/X 4.34 4.19 7.66 6.33 安全系数/X	安全系数/Y 11.01 10.63 19.41 16.04 沪 安全系数/Y	是足 滅滅足 是足 足 足 足 足 足 足 足 足 足 足 足 足 足 足 足	5满足/X 是 满足 满足 满足 满足 满足	
· [] [] [] [] [] [] [] [] [] [] [] [] []	楼号 2 3 4 5 Wavenar 楼号 2	抗倾覆力矩/X 104282.34 66102.41 33931.20 4311.13 me: 13时37分,人工 抗倾覆力矩/X 104282.34	抗倾覆力矩/Y 264408.78 167600.86 86031.49 10930.36 波2 [0.0]+[COMB3]	倾覆力矩/X 24021.44 15762.79 4432.17 681.30 +[DI] 倾覆力矩/X 23944.54	倾覆力矩/Y 24021.44 15762.79 4432.17 681.30 倾覆力矩/Y 23944.54	安全系数/X 4.34 4.19 7.66 6.33 安全系数/X 4.36	 安全系数/Y 11.01 10.63 19.41 16.04 第 安全系数/Y 11.04 	是22 满足足 满足 满足 満足	 満足/X 是 満足 満足 満足 満足 満足 満足 満足 	否满足/Y
	楼号 2 3 4 5 Wavenar 楼号 2 3	抗倾覆力矩/X 104282.34 66102.41 33931.20 4311.13 me: 13时37分,人工 抗倾覆力矩/X 104282.34 66102.41	抗倾覆力矩/Y 264408.78 167600.86 86031.49 10930.36 波2 [0.0]+[COMB3] 抗倾覆力矩/Y 264408.78 167600.86	倾覆力矩/X 24021.44 15762.79 4432.17 681.30 +[DI] 倾覆力矩/X 23944.54 15499.87	倾覆力矩/Y 24021.44 15762.79 4432.17 681.30 倾覆力矩/Y 23944.54 15499.87	安全系数/X 4.34 4.19 7.66 6.33 安全系数/X 4.36 4.26	 安全系数/Y 11.01 10.63 19.41 16.04 沪 安全系数/Y 11.04 10.81 	是足足 满足足 人子子。 一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一	(满足/X 是 满足 满足 满足 满足 满足 满足 满足 满足 满足 满足 满足 满足 满足	否满足∧ 否满足∧
	楼号 2 3 4 5 Wavenar 楼号 2 3 4	抗倾覆力矩/X 104282.34 66102.41 33931.20 4311.13 me: 13时37分,人工 抗倾覆力矩/X 104282.34 66102.41 33931.20	抗倾覆力矩/Y 264408.78 167600.86 86031.49 10930.36 波2 [0.0]+[COMB3] 抗倾覆力矩/Y 264408.78 167600.86 86031.49	倾覆力矩/X 24021.44 15762.79 4432.17 681.30 +[DI] 	倾覆力垣/Y 24021.44 15762.79 4432.17 681.30 倾覆力垣/Y 23944.54 15499.87 4128.58	安全系数/X 4.34 4.19 7.66 6.33 安全系数/X 4.36 4.26 8.22	 安全系数/Y 11.01 10.63 19.41 16.04 淨 安全系数/Y 11.04 10.81 20.84 	海湖 满海足 是足足 是足足 是足足 二 二 二 二 二 二 二 二 二 二 二 二 二	5满足/X 是 满足 满足 满足 满足 满足 满足 满足 满足 满足 满足	満足 満足

5.4 隔震支座水平位移计算

罕遇地震下隔震层水平位移计算采用的荷载组合: 1.0×恒荷载+0.5×活荷载+1.0 ×水平地震;其荷载组合为: 1D+0.5L+1 Fek。得到罕遇地震下各个支座最大水平位移, 详见表 6.1.1。

支座		支座位移 (m)											支座位移						
编号			地	震波主方向	n与X轴正向]角度为0.	0度			地震波主方向与X轴正向角度为90.0度							平均值(m)		
	支座型号	R1	R2	T1	T2	T3	T4	T5	R1	R2	T1	T2	T3	T4	T5	X向	Y向	最值	
1	LRB600	184.61	235.14	195.59	239.14	236.3	236.3	179.24	181.27	236.92	206.04	243.08	234.04	234.04	178.94	215.19	217.62	217.62	
2	LRB600	183.44	235.12	201.1	246.68	230.92	230.92	181.99	191.98	232.95	193.84	257.11	236.88	236.88	183.35	215.74	219	219	
3	LRB600	186.69	229.57	192.98	240.14	235.08	235.08	175.75	180.05	235.4	201.61	243.29	233.24	233.24	180.48	213.61	214.8	214.8	
4	LRB600	187.4	230.7	194.2	243.76	234.08	234.08	178.22	181.67	233.77	199.92	243.57	231.71	231.71	179.83	214.63	214.6	214.63	
5	LRB600	185.68	234.2	196.39	242.38	235.43	235.43	180.63	183.86	236.56	203.82	245.18	233.72	233.72	180.64	215.73	216.78	216.78	
6	LRB600	185.37	236.57	196.29	240.47	236.39	236.39	181.54	181.76	234.2	203.41	244.29	232.21	232.21	179.64	216.15	215.39	216.15	
7	LRB600	187.65	231.02	195.02	244.36	233.9	233.9	178.03	182.92	233.59	198.49	243.82	232	232	180.47	214.84	214.76	214.84	
8	LNR500	186.76	235.39	197.87	242.67	235.8	235.8	180.45	185.03	236.32	202.29	245.35	234.28	234.28	181.54	216.39	217.01	217.01	
9	LNR500	185.93	234.71	198.54	244.23	234.17	234.17	180.83	187.07	235.36	199.71	246.02	234.48	234.48	182.19	216.08	217.04	217.04	
10	LNR500	185.38	236.74	198.42	242.74	234.81	234.81	182.04	185.45	233.52	199.9	245.35	233.66	233.66	181.12	216.42	216.09	216.42	
11	LRB600	186.95	230.44	195.6	245.63	232.51	232.51	178.28	184.71	232.45	195.64	244.58	232	232	181.35	214.56	214.68	214.68	
12	LNR500	185.33	236.99	199.56	254.7	234.03	234.03	182.85	187.57	232.74	197.6	246.55	234.68	234.68	182.21	218.21	216.58	218.21	
13	LNR500	185.87	237.13	197.46	241.2	236.29	236.29	181.74	183.25	234.29	202.4	244.78	232.94	232.94	180.56	216.57	215.88	216.57	
14	LRB600	185.34	229.34	198.28	249.72	229.26	229.26	179.17	191.12	231.79	189.8	251.4	234.53	234.53	184.68	214.34	216.84	216.84	
15	LRB600	186.96	230.75	196.95	247.85	231.58	231.58	179.2	187.08	231.93	193.58	245.55	232.89	232.89	182.23	214.98	215.16	215.16	
16	LRB600	187.36	231.31	197.92	248.43	231.38	231.38	179.2	188.11	231.51	192.03	245.91	233.67	233.67	182.76	215.28	215.38	215.38	
17	LNR500	185.79	234.9	199.76	246.49	233.19	233.19	181.78	189.37	234.74	197.59	247.21	235.43	235.43	183.15	216.44	217.56	217.56	
18	LNR500	186.28	235.51	200.81	246.66	233.14	233.14	181.18	190.43	234.4	195.82	247.27	236.36	236.36	183.76	216.67	217.77	217.77	
19	LRB600	185.28	237.09	200.01	245.2	233.64	233.64	182.56	188.16	231.87	195.82	246.47	235.19	235.19	182.21	216.77	216.42	216.77	

表 6.1.1 罕遇地震时隔震结构各支座最大位移
由表 6.1.1 可知,隔震层最大水平位移 219mm,小于 0.55D=275mm(D 为最小隔 震支座直径,本工程采用隔震支座最小直径为 500mm)及 3Tr=279mm(Tr 为最小隔震 支座的橡胶层总厚度)中的较小值。

根据《建筑隔震设计标准》5.4.1 条规定:上部结构与周围固定物之间应设置完全贯 通的竖向隔离缝以避免罕遇地震作用下可能的阻挡和碰撞,隔离缝宽度不应小于隔震支 座在罕遇地震下的最大水平位移的 1.2 倍且不应小于 300mm。对相邻隔震结构之间的隔 离缝,缝宽取最大水平位移值之和,且不应小于 600mm。对于相邻的高层隔震建筑,考 虑到地震时上部结构顶部位移会大于隔震层处位移,因此隔震缝要留出罕遇地震时隔震 缝的宽度加上防震缝的宽度,方才合适。

上部结构和下部结构之间,应设置完全贯通的水平隔离缝,缝高可取 50mm,并用 柔性材料填充;当设置水平隔离缝确有困难时,应设置可靠的水平滑移垫层。

隔震构造措施的具体做法参考图集《楼地面变形缝》(04J312)和《建筑结构隔震 构造详图》(03SG610-1)。

5.5 隔震支座应力验算

根据《抗规》12.2.4 条规定及《建筑隔震设计标准》第6.2.1 条规定:隔震橡胶支座 在罕遇地震的水平和竖向地震同时作用下,拉应力不应大于1.0MPa。 隔震支座拉应力验算采用的荷载组合:1.0×恒荷载-1.0×水平地震-0.5×竖向地震,即: 1D-1Fek-0.5Fevk,

隔震支座压应力验算采用的荷载组合:1.0×恒荷载+0.5×活荷载+1.0×水平地震 +0.4×竖向地震,即:**1D+0.5L+1Fek+0.4Fevk**,得到罕遇地震下各个支座承受的最大拉 应力和压应力,详见下表,隔震支座拉压应力满足规范要求。

101

6.2.1 隔震支座压应力

地震波主方向与 X 轴正向角度为 0.0 度\组合为 COMB3 的工况结果汇总

		面积								压力平均	压应力
编号	支座类型	(mm2)	地震波1	地震波2	地震波3	地震波4	地震波5	地震波6	地震波7	值 (KN)	(MPa)
1	1	282700	-1533.04	-1680.55	-1549.9	-1552.5	-1552.5	-1513.21	-1553.88	-1562.22	-5.53
2	1	282700	-1460.19	-1399.34	-1717.87	-1574.22	-1574.22	-1320.65	-1436.51	-1497.57	-5.3
3	1	282700	-1572.9	-1553.48	-1763.27	-1787.73	-1787.73	-1478.74	-1524.65	-1638.36	-5.8
4	1	282700	-1613.27	-1605.29	-1734.32	-1764.27	-1764.27	-1549.4	-1583.01	-1659.12	-5.87
5	1	282700	-1576.71	-1571.64	-1707.71	-1677.08	-1677.08	-1537.98	-1654.07	-1628.9	-5.76
6	1	282700	-1028.49	-1135.74	-984.46	-1093.86	-1093.86	-984.79	-1049.79	-1053	-3.72
7	1	282700	-1492.03	-1588.76	-1504.92	-1577.85	-1577.85	-1517.87	-1500.34	-1537.09	-5.44
8	2	196000	-1239.59	-1255.81	-1261.37	-1290.01	-1290.01	-1271.17	-1276.31	-1269.18	-6.48
9	2	196000	-1316.2	-1315.71	-1322.81	-1337.72	-1337.72	-1303.85	-1320.83	-1322.12	-6.75
10	2	196000	-942.95	-961.76	-967.36	-1020.41	-1020.41	-852.64	-973.92	-962.78	-4.91
11	1	282700	-1414.35	-1414.59	-1456.62	-1527.73	-1527.73	-1344.42	-1430.06	-1445.07	-5.11
12	2	196000	-941.09	-1076.77	-962.88	-993.15	-993.15	-951.47	-977.5	-985.15	-5.03
13	2	196000	-959.22	-908.55	-1125.65	-1061.84	-1061.84	-825.54	-959.18	-985.98	-5.03
14	1	282700	-1414.14	-1513.88	-1404.38	-1521.08	-1521.08	-1411.98	-1433.18	-1459.96	-5.16
15	1	282700	-1458.28	-1462.48	-1567.59	-1615.85	-1615.85	-1385.34	-1419.9	-1503.61	-5.32
16	1	282700	-1448.02	-1517.73	-1448.66	-1523.32	-1523.32	-1438.87	-1434.56	-1476.35	-5.22
17	2	196000	-1281.87	-1240.12	-1328.57	-1345.49	-1345.49	-1218.85	-1334.09	-1299.21	-6.63
18	2	196000	-1477.07	-1473.66	-1492.36	-1541.25	-1541.25	-1501.38	-1522.07	-1507.01	-7.69
19	1	282700	-970.15	-983.22	-1164.72	-1123.98	-1123.98	-861.68	-1031.6	-1037.05	-3.67
			圧	应力限值》	内−25.OMP≉	a,最大压/	立力值-7.0	39			

地震波主方向与 X 轴正向角度为 90.0 度\组合为 COMB3 的工况结果汇总

		面积								压力平均	压应力
编号	支座类型	(mm2)	地震波1	地震波2	地震波3	地震波4	地震波5	地震波6	地震波7	值 (KN)	(MPa)
1	1	282700	-1542.96	-1564.55	-1758.97	-1721.67	-1721.67	-1443.13	-1612.33	-1623.61	-5.74
2	1	282700	-1580.38	-1621.43	-1595.88	-1525.4	-1525.4	-1519.28	-1626.97	-1570.68	-5.56
3	1	282700	-1578.51	-1630.51	-1537.33	-1698.78	-1698.78	-1637.44	-1647.18	-1632.65	-5.78
4	1	282700	-1619.58	-1653.97	-1601.41	-1687.29	-1687.29	-1665.23	-1672.73	-1655.36	-5.86
5	1	282700	-1550.38	-1583.15	-1549.33	-1612.5	-1612.5	-1523.97	-1540.23	-1567.44	-5.54
6	1	282700	-1067.59	-1055.1	-1238.75	-1239.43	-1239.43	-993.34	-1199.64	-1147.61	-4.06
7	1	282700	-1564.72	-1564.09	-1724.47	-1634.64	-1634.64	-1500.61	-1503.71	-1589.56	-5.62
8	2	196000	-1206.5	-1211.32	-1283.59	-1268.9	-1268.9	-1167.46	-1227.51	-1233.46	-6.29
9	2	196000	-1322.36	-1330.1	-1338.79	-1342.16	-1342.16	-1330.67	-1334.35	-1334.37	-6.81
10	2	196000	-1045.33	-975.65	-1133.45	-1114.17	-1114.17	-971.58	-1137.22	-1070.22	-5.46
11	1	282700	-1435.92	-1481.97	-1539.13	-1542.09	-1542.09	-1487.64	-1506.35	-1505.03	-5.32
12	2	196000	-978.5	-981.95	-1194.42	-1131.17	-1131.17	-886.54	-1059.65	-1051.92	-5.37
13	2	196000	-1055.14	-1106.17	-1082.21	-1079.99	-1079.99	-1005.44	-1130.78	-1077.1	-5.5
14	1	282700	-1500.35	-1476.87	-1723.22	-1603.97	-1603.97	-1390.41	-1418.69	-1531.07	-5.42
15	1	282700	-1460.39	-1504.19	-1438.26	-1502.09	-1502.09	-1512.53	-1518.93	-1491.21	-5.27
16	1	282700	-1510.15	-1513.03	-1663.5	-1594.32	-1594.32	-1446.89	-1478.18	-1542.91	-5.46
17	2	196000	-1234.4	-1265.31	-1223.64	-1288.47	-1288.47	-1198.54	-1248.6	-1249.63	-6.38
18	2	196000	-1426.06	-1430.84	-1536.17	-1514.29	-1514.29	-1347.33	-1460.92	-1461.41	-7.46
19	1	282700	-1138.58	-1125.94	-1184.03	-1148.38	-1148.38	-1069.95	-1214.08	-1147.05	-4.06
			圧	应力限值	为−25.OMP∶	a,最大压/	应力值−7.4	16			

地震波主方向与 X 轴正向角度为 0.0 度\组合为 COMB4 的工况结果汇总

编号	支座类型	面积 (mm2)	 地震波1	地震波2	 地震波3	地震波4	地震波5	地震波6	地震波7	压力平均 值(KN)	压应力 (MPa)
1	1	282700	-1580.64	-1663.5	-1610.16	-1564.28	-1564.28	-1518.12	-1630.99	-1590.28	-5.63
2	1	282700	-1505.15	-1542.35	-1651.8	-1680.04	-1680.04	-1373.41	-1558.49	-1570.18	-5.55
3	1	282700	-1624.32	-1583.31	-1757	-1873.08	-1873.08	-1525.91	-1682.39	-1702.73	-6.02
4	1	282700	-1725.22	-1691.6	-1814.32	-1897.74	-1897.74	-1648.54	-1763.93	-1777.01	-6.29
5	1	282700	-1660.6	-1633.92	-1680.8	-1726.43	-1726.43	-1618.91	-1648.01	-1670.73	-5.91
6	1	282700	-1076.1	-1136.72	-1104.71	-1122.58	-1122.58	-991.76	-1120.98	-1096.49	-3.88
7	1	282700	-1661.09	-1692.43	-1629.75	-1628.26	-1628.26	-1574.96	-1612.07	-1632.4	-5.77
8	2	196000	-1294.09	-1314.36	-1305.97	-1280.73	-1280.73	-1293.69	-1300.89	-1295.78	-6.61
9	2	196000	-1484.33	-1484.08	-1490.84	-1505.62	-1505.62	-1472.17	-1488.87	-1490.22	-7.6
10	2	196000	-1032.41	-1051.64	-1060.95	-1109.87	-1109.87	-944.98	-1063.4	-1053.3	-5.37
11	1	282700	-1568.78	-1570.27	-1611.22	-1681.68	-1681.68	-1500.74	-1585.58	-1599.99	-5.66
12	2	196000	-961.95	-1051.38	-984.9	-999.13	-999.13	-908.7	-1005.35	-987.22	-5.04
13	2	196000	-962.62	-998.66	-1072.04	-1112.23	-1112.23	-846.7	-1011.71	-1016.6	-5.19
14	1	282700	-1537.28	-1574.09	-1497.46	-1508.38	-1508.38	-1444.76	-1450.21	-1502.94	-5.32
15	1	282700	-1545.66	-1502.66	-1630.96	-1732.51	-1732.51	-1470.33	-1579.96	-1599.23	-5.66
16	1	282700	-1605.35	-1629.09	-1576.19	-1609.84	-1609.84	-1532.48	-1558.68	-1588.78	-5.62
17	2	196000	-1310.48	-1302.85	-1326.47	-1365.69	-1365.69	-1296.37	-1326.36	-1327.7	-6.77
18	2	196000	-1514.4	-1558.14	-1521.14	-1506.57	-1506.57	-1514.11	-1518.93	-1519.98	-7.76
19	1	282700	-1068.78	-1088.14	-1149.49	-1197.6	-1197.6	-959.05	-1110.96	-1110.23	-3.93
	15 AS		圧	应力限值》	为-25.0MP。	a,最大压/	应力值-7.′	76			

地震波主方向与 X 轴正向角度为 90.0 度\组合为 COMB4 的工况结果汇总

	2	面积		anannaarna ()			anan sama			压力平均	压应力
编号	支座类型	(mm2)	地震波1	地震波2	地震波3	地震波4	地震波5	地震波6	地震波7	值 (KN)	(MPa)
1	1	282700	-1547.1	-1502.47	-1610.32	-1724.68	-1724.68	-1485.79	-1554.98	-1592.86	-5.63
2	1	282700	-1481.73	-1539.9	-1440.82	-1380.98	-1380.98	-1450.06	-1483.12	-1451.09	-5.13
3	1	282700	-1603.42	-1651.49	-1575.25	-1495.22	-1495.22	-1526.19	-1511.81	-1551.23	-5.49
4	1	282700	-1698.22	-1733.92	-1683.31	-1622.67	-1622.67	-1648.82	-1637.03	-1663.81	-5.89
5	1	282700	-1728.14	-1737.82	-1714.18	-1770.42	-1770.42	-1668.28	-1705.77	-1727.86	-6.11
6	1	282700	-991.87	-956.98	-1018.8	-1094.63	-1094.63	-944.91	-975.23	-1011.01	-3.58
7	1	282700	-1581.56	-1580.66	-1688.08	-1675.42	-1675.42	-1492.16	-1593.45	-1612.39	-5.7
8	2	196000	-1346.29	-1357.03	-1385.56	-1399.47	-1399.47	-1312.71	-1378.48	-1368.43	-6.98
9	2	196000	-1464.18	-1467.67	-1466.29	-1470.29	-1470.29	-1463.1	-1466.58	-1466.92	-7.48
10	2	196000	-929.87	-886.83	-921.53	-953.53	-953.53	-906.07	-940.88	-927.47	-4.73
11	1	282700	-1461.01	-1464.66	-1511.04	-1481.94	-1481.94	-1453.78	-1466.92	-1474.47	-5.22
12	2	196000	-926.39	-878.27	-981.94	-1062.43	-1062.43	-867.26	-915.71	-956.35	-4.88
13	2	196000	-936.12	-979.59	-902.58	-872.65	-872.65	-909.95	-929.78	-914.76	-4.67
14	1	282700	-1428.98	-1441.66	-1595.38	-1577.95	-1577.95	-1319.71	-1460.83	-1486.07	-5.26
15	1	282700	-1513.86	-1567.03	-1506.57	-1436.47	-1436.47	-1464.18	-1460.25	-1483.55	-5.25
16	1	282700	-1516.51	-1515.5	-1625.02	-1599.03	-1599.03	-1444.35	-1528.47	-1546.85	-5.47
17	2	196000	-1365.55	-1392.84	-1392.46	-1435.54	-1435.54	-1320.19	-1383.98	-1389.44	-7.09
18	2	196000	-1593.64	-1603.4	-1639.45	-1666.68	-1666.68	-1517.19	-1609.59	-1613.81	-8.23
19	1	282700	-987.47	-1009.3	-972.12	-919.58	-919.58	-974.77	-990.42	-967.61	-3.42
			F	应力限值	为-25.0MP。	1,最大压/	立力值-8.2	23			

注释:负值表示受压,正值表示受拉。

本工程隔震支座最大压应力为-8.23,小于-25.0Mpa,满足规范要求。

6.2.2、隔震支座拉应力

根据《抗规》12.2.4条规定:隔震橡胶支座在罕遇地震的水平和竖向地震同时作用下,

拉应力不应大于 1.0Mpa。

隔震支座拉应力验算采用的地震波工况按主方向角度可分为如下组别:

1)0.00度

13时37分,人工波2[0.00]

CapeMendocino_NO_3749,TG(0.50) [0.00]

Chi-Chi_Taiwan-06_NO_3431,TG(0.52) [0.00]

Gilroy NO 2015,TG(0.50) [0.00]

Gilroy_NO_2015,Tg(0.50) [0.00]

SanFernando_NO_55,TG(0.57) [0.00]

aa 人工波 1 [0.00]

2)90.00度

13 时 37 分,人工波 2 [90.00]

CapeMendocino_NO_3749,TG(0.50) [90.00]

Chi-Chi_Taiwan-06_NO_3431,TG(0.52) [90.00]

Gilroy_NO_2015,TG(0.50) [90.00]

Gilroy_NO_2015,Tg(0.50) [90.00]

SanFernando_NO_55,TG(0.57) [90.00]

aa 人工波 1 [90.00]

		面积								拉力平均	拉应力
编号	支座类型	(mm2)	地震波1	地震波2	地震波3	地震波4	地震波5	地震波6	地震波7	值 (KN)	(MPa)
1	1	282700	0	0	0	0	0	0	0	0	0
2	1	282700	0	0	0	0	0	0	0	0	0
3	1	282700	0	0	0	0	0	0	0	0	0
4	1	282700	0	0	0	0	0	0	0	0	0
5	1	282700	0	0	0	0	0	0	0	0	0
6	1	282700	0	0	20.55	64.1	64.1	0	0	21.25	0.08
7	1	282700	0	0	0	0	0	0	0	0	0
8	2	196000	0	0	0	0	0	0	0	0	0
9	2	196000	0	0	0	0	0	0	0	0	0
10	2	196000	0	0	0	0	0	0	0	0	0
11	1	282700	0	0	0	0	0	0	0	0	0
12	2	196000	0	0	58.87	81.17	81.17	0	0	31.6	0.16
13	2	196000	0	10.86	0	5.17	5.17	0	0	3.03	0.02
14	1	282700	0	0	33.06	0	0	0	0	4.72	0.02
15	1	282700	0	0	0	0	0	0	0	0	0
16	1	282700	0	0	0	0	0	0	0	0	0
17	2	196000	0	0	0	0	0	0	0	0	0
18	2	196000	0	0	0	0	0	0	0	0	0
19	1	282700	0	0	0	1.09	1.09	0	0	0.31	0
				拉应力限/	值为1.0MPa	a. 最大拉J	应力值0.2				

地震波主方向与 X 轴正向角度为 0.0 度\组合为 COMB5 的工况结果汇总

地震波主方向与 X 轴正向角度为 90.0 度\组合为 COMB5 的工况结果汇总

编号	支座类型	面积 (mm2)	地震波1	地震波2	地震波3	地震波4	地震波5	地震波6	地震波7	拉力平均 值(KN)	拉应力 (MPa)
1	1	282700	0	0	0	0	0	0	0	0	0
2	1	282700	0	0	46.34	0	0	0	0	6.62	0.02
3	1	282700	0	0	0	0	0	0	0	0	0
4	1	282700	0	0	0	0	0	0	0	0	0
5	1	282700	0	0	0	0	0	0	0	0	0
6	1	282700	26.15	23.16	63.37	43.2	43.2	0	80.95	40.01	0.14
7	1	282700	0	0	0	0	0	0	0	0	0
8	2	196000	0	0	0	0	0	0	0	0	0
9	2	196000	0	0	0	0	0	0	0	0	0
10	2	196000	0	0	12.63	0	0	0	15.85	4.07	0.02
11	1	282700	0	0	0	0	0	0	0	0	0
12	2	196000	32.35	48.97	63.59	51.51	51.51	5.89	87.08	48.7	0.25
13	2	196000	0	3.85	92.23	74.74	74.74	0	51	42.37	0.22
14	1	282700	0	0	0	0	0	0	0	0	0
15	1	282700	0	0	0	0	0	0	0	0	0
16	1	282700	0	0	0	0	0	0	0	0	0
17	2	196000	0	0	0	0	0	0	0	0	0
18	2	196000	0	0	0	0	0	0	0	0	0
19	1	282700	0	0	81.26	69.5	69.5	0	72.46	41.82	0.15
Ĵ.				拉应力限(值为1.0MP;	a,最大拉	应力值0.2				

20 1.000000	0 a	面积	2 		0 	C alateration	2 		C ann a channail	拉力平均	拉应力
编号	支座类型	(mm2)	地震波1	地震波2	地震波3	地震波4	地震波5	地震波6	地震波7	值 (KN)	(MPa)
1	1	282700	0	0	0	74.28	74.28	0	0	21.22	0.08
2	1	282700	0	0	0	0	0	0	0	0	0
3	1	282700	0	0	0	0	0	0	0	0	0
4	1	282700	0	0	0	0	0	0	0	0	0
5	1	282700	0	0	0	0	0	0	0	0	0
6	1	282700	0	0	38.19	118.87	118.87	0	14.63	41.51	0.15
7	1	282700	0	0	0	0	0	0	0	0	0
8	2	196000	0	0	0	0	0	0	0	0	0
9	2	196000	0	0	0	0	0	0	0	0	0
10	2	196000	0	0	0	35.45	35.45	0	0	10.13	0.05
11	1	282700	0	0	0	0	0	0	0	0	0
12	2	196000	0	0	48.97	117.28	117.28	0	17.28	42.97	0.22
13	2	196000	15.09	26.74	0	42.64	42.64	0	0	18.16	0.09
14	1	282700	0	0	0	0	0	0	0	0	0
15	1	282700	0	0	0	0	0	0	0	0	0
16	1	282700	0	0	0	0	0	0	0	0	0
17	2	196000	0	0	0	0	0	0	0	0	0
18	2	196000	0	0	0	0	0	0	0	0	0
19	1	282700	0	4.75	3.25	67.89	67.89	0	0	20.54	0.07
	1949 - Barry B.	50	60	拉应力限的	值为1.0MPa	a,最大拉/	应力值0.2		86	100	

地震波主方向与 X 轴正向角度为 0.0 度\组合为 COMB6 的工况结果汇总

地震波主方向与 X 轴正向角度为 90.0 度\组合为 COMB6 的工况结果汇总

编号	支座类型	面积 (mm2)	 地震波1	地霍波2	地霍波3	地霍波4	地霍波5	地震波6	地霍波7	拉力平均 值(KN)	拉应力 (MPa)
1	1	282700	0	0	0	0	0	0	0	0	0
2	1	282700	0	0	0	0	0	0	0	0	0
3	1	282700	0	0	0	0	0	0	0	0	0
4	1	282700	0	0	0	0	0	0	0	0	0
5	1	282700	0	0	0	0	0	0	0	0	0
6	1	282700	0	0	0	0	0	0	0	0	0
7	1	282700	0	0	0	0	0	0	0	0	0
8	2	196000	0	0	0	0	0	0	0	0	0
9	2	196000	0	0	0	0	0	0	0	0	0
10	2	196000	0	0	0	0	0	0	0	0	0
11	1	282700	0	0	0	0	0	0	0	0	0
12	2	196000	0	0	0	0	0	0	0	0	0
13	2	196000	0	0	0	41.42	41.42	0	0	11.84	0.06
14	1	282700	0	0	0	0	0	0	0	0	0
15	1	282700	0	0	0	0	0	0	0	0	0
16	1	282700	0	0	0	0	0	0	0	0	0
17	2	196000	0	0	0	0	0	0	0	0	0
18	2	196000	0	0	0	0	0	0	0	0	0
19	1	282700	0	0	0	0	0	0	0	0	0
	1971 - D		723	拉应力限(值为1.0MPa	1. 最大拉	立力值0.1	61.	Te S.	721	12 N

注释:负值表示受压,正值表示受拉

5.6 层间位移角验算

罕遇地震下层间位移角验算,得到罕遇地震下隔震结构层间位移角,详见表 10.1。

地震波主方向与 X 轴正向角度为 0.0 度的工况结果汇总

					主向							次向				主向平均	次向平均
层号	塔号	地震波1	地震波2	地震波3	地震波4	地震波5	地震波6	地震波7	地震波1	地震波2	地震波3	地震波4	地震波5	地震波6	地震波7	值	值
5	1	1/1113	1/1179	1/894	1/930	1/930	1/1206	1/899	1/1669	1/1545	1/1432	1/1198	1/1198	1/2047	1/1539	1/1006	1/1473
4	1	1/721	1/744	1/575	1/600	1/600	1/729	1/579	1/881	1/800	1/760	1/603	1/603	1/1167	1/818	1/642	1/770
3	1	1/513	1/540	1/412	1/429	1/429	1/529	1/411	1/618	1/584	1/507	1/436	1/436	1/782	1/563	1/460	1/541
2	1	1/493	1/499	1/407	1/420	1/420	1/495	1/406	1/615	1/603	1/529	1/437	1/437	1/773	1/567	1/445	1/546
1	1	1/11132	1/11621	1/9187	1/9504	1/9504	1/11431	1/8966	1/14327	1/14233	1/12358	1/10510	1/10510	1/16518	1/13550	1/10084	1/12830

地震波主方向与 X 轴正向角度为 90.0 度的工况结果汇总

0	С.		20	\$1	主向	\$1.C	0.1	\$.		19.4	16.7	次向	\$1C	p.;	\$1.C	主向平均	次向平均
层号	塔号	地震波1	地震波2	地震波3	地震波4	地震波5	地震波6	地震波7	地震波1	地震波2	地震波3	地震波4	地震波5	地震波6	地震波7	值	值
5	1	1/1251	1/1387	1/1010	1/1047	1/1047	1/1380	1/1020	1/1493	1/1308	1/1195	1/993	1/993	1/1705	1/1398	1/1143	1/1253
4	1	1/686	1/692	1/546	1/570	1/570	1/692	1/551	1/949	1/881	1/788	1/647	1/647	1/1291	1/883	1/608	1/828
3	1	1/473	1/474	1/379	1/393	1/393	1/484	1/377	1/681	1/637	1/574	1/463	1/463	1/962	1/630	1/420	1/597
2	1	1/488	1/481	1/402	1/408	1/408	1/475	1/394	1/648	1/605	1/587	1/463	1/463	1/879	1/598	1/433	1/582
1	1	1/10929	1/11386	1/9199	1/9449	1/9449	1/11336	1/8922	1/14638	1/14114	1/12967	1/10375	1/10375	1/20093	1/13620	1/10000	1/13152

由上表可知,计算结果满足《新隔标》第4.5.2条限值要求

六、施工与维护

(1) 隔震支座的检查和试验

隔震支座的生产厂家应为通过产品型式检验的企业。建设单位应对厂方提供的每一 种型号的隔震支座按《抗规》12.1.5条规定进行抽检,合格后才能使用。

(2) 施工安装

①支承隔震支座的支墩(或柱)其顶面水平度误差不宜大于 5‰;在隔震支座安装后 隔震支座顶面的水平度误差不宜大于 8‰。

②隔震支座中心的平面位置与设计位置的偏差不应大于 5.0mm。

③隔震支座中心的标高与设计标高的偏差不应大于 5.0mm。

④同一支墩上多个隔震支座之间的顶面高差不宜大于 5.0mm。

⑤隔震支座连接板和外露连接螺栓应采取防锈保护措施。

⑥在隔震支座安装阶段应对支墩(或柱)顶面、隔震支座顶面的水平度、隔震支座 中心的平面位置和标高进行观测并记录。 ⑦在工程施工阶段对隔震支座宜有临时覆盖保护措施,隔震房屋宜设置必要的临时 支撑或连接,避免隔震层发生水平位移

(3) 施工测量

①在工程施工阶段应对隔震支座的竖向变形做观测并记录。

②在工程施工阶段应对上部结构隔震层部件与周围固定物的脱开距离进行检查。

(4) 工程验收

隔震结构的验收除应符合国家现行有关施工及验收规范的规定外尚应提交下列文件:

①隔震层部件供货企业的合法性证明。

②隔震层部件出厂合格证书。

③隔震层部件的产品性能出厂检验报告。

④隐蔽工程验收记录。

⑤预埋件及隔震层部件的施工安装记录。

⑥隔震结构施工全过程中隔震支座竖向变形观测记录。

⑦隔震结构施工安装记录。

⑧含上部结构与周围固定物脱开距离的检查记录。

(5) 隔震层的维护与管理

①应制订和执行对隔震支座进行检查和维护的计划。

②应定期观测隔震支座的变形及外观情况。

③应经常检查是否存在有限制上部结构位移的障碍物,并及时予以清除。

④隔震层部件的改装、修理、更换或加固,应在有经验的专业工程技术人员的指导 下进行。

⑤考虑到隔震技术的专业性,建议小区的物业管理公司人员应具有这方面的知识, 最好是由对本工程施工过程比较熟悉的人员参加管理。

第四章 隔震结构分部设计法软件实现流程

一、隔震结构分部设计方法及软件实现流程

分部设计方法即将整个隔震结构分为上部结构、隔震层和下部结构及基础,分别进 行设计。

概括来说:

上部结构:沿用一般抗震结构的设计方法,水平地震作用采用隔震以后的地震作用标准值。隔震支座不能隔离竖向地震作用,所以与竖向地震作用相关的不降低(如轴压比等)。

隔震层:在满足长期荷载下压应力要求外,除了满足减震目标后,还得满足短期荷载下的压应力、拉应力以及隔震支座的位移。

隔震层以下结构:地震作用计算、抗震验算和抗震措施,应进行设防地震(中震) 的抗震承载力验算,并按罕遇地震(大震)进行抗剪承载力验算。隔震层以下地面以上 的结构在罕遇地震(大震)下的层间位移角控制。

基础: 地基基础的抗震验算不考虑隔震产生的减震效应,按本地区设防烈度进行设计。

软件解决了几个应用难点:

1)非线性结构,需按动力时程分析计算,对隔震支座还需按照可进行大震和竖向地 震计算的 FNA 或者直接积分法。

2)不同部位须分别采用小震、中震、大震计算。

3) 非隔震模型的考虑地震力的水平向减震系数的反应谱计算不可或缺。

软件输出隔震支座内力、位移、应力计算结果,给出图形和文本两种表达。

隔震垫上的短柱一般称为上柱或上墩,隔震垫下的柱子一般称为下支柱或者支墩, 本文统一为支墩。支墩一般较矮。

以下以某工程为例进行说明。

本工程某地小学教室,8度设防,1层地下室,地上4层,地下室顶隔震,进行隔震 设计;

建立上部结构(3-6 层)、隔震层中隔震垫高度不考虑,第 2 层为隔震垫上墩层,此 处称为隔震层;隔震垫位于二层柱底的位置。有些工程师建模时不建支墩层,则此时支 墩的配筋需要单独建悬臂柱来计算。

上部结构层(3-6 层)、隔震层(2 层)、下部结构标准层(1 层),如下图。

进行楼层组装

全楼模型

	<u></u>	,		
			h	
		K.		

			上部结构	
阿爾巴				
層展层	下部结构			

以下是各部分设计软件实现的流程:

二、上部结构设计-非隔震模型《抗规》减震系数法

(一)相关规范

《抗规》12.2.5 条:

隔震层以上结构的地震作用计算,应符合下列规定:

1.对多层结构,水平地震作用沿高度可按重力荷载代表值分布;

2.隔震后水平地震作用计算的水平地震影响系数可按本规范 5.1.4、第 5.1.5条确定。 其中水平地震影响系数最大值可按下式计算:

 $\alpha maxl{=}\beta\alpha max/\psi$

αmaxl——隔震后的水平地震影响系数最大值;

αmax——非隔震的水平地震影响系数最大值,按本规范第 5.1.4 条采用;

β——水平向减震系数;对于多层建筑,为按弹性计算所得的隔震与非隔震各层层间 剪力的最大比值。对高层建筑结构,尚应计算隔震与非隔震各层倾覆力矩的最大比值, 并与层间剪力的最大比值相比较,取二者的较大值。

Ψ——调整系数;一般橡胶支座,取 0.80;支座剪切性能偏差 S-A 类,取 0.85;隔 震装置带有阻尼器时,相应减小 0.05;

注:1弹性计算时,简化计算和反应谱分析时宜按隔震支座水平剪切应变为100%时 的性能参数进行计算;当采用时程分析法时按**设计基本地震加速度**输入进行计算。

3.隔震层以上结构的总水平地震作用不得低于非隔震结构在6度设防时的总水平地震作用,并应进行抗震验算;各楼层的水平地震剪力尚应符合本规范第5.2.5条对本地区设防 烈度的最小地震剪力系数的规定。

(二) 建立隔震模型与非隔震模型

软件实现流程:

1、建立结构模型:建立上部结构、隔震层、下部结构都包括的整体模型。

2、将模型文件复制两份

将模型文件复制两份,一个布置上隔震支座属性,此时叫**隔震模型**;

另一个不布置隔震支座属性,隔震支柱底端设铰,此时模型叫非隔震模型。

隔震模型:

将一个模型在前处理用单点约束菜单,选择隔震支座,将各属性参数输入后,布置 在第二标准层即隔震层的柱节点上,实现的是第2层柱底位置为隔震支座。此模型即为 隔震模型。

交校	授政 建設 投計	✓ 删除局部系长度 温度荷载 活荷折減 生成数据 ✓ 删除局部系 长度 温度荷载 活荷折減 生成数据 ✓ 删除位称	▼
	关闭		
	<u>私相关定义 ▼</u> ↔ 新商积 (a2)		
周囲力は7 年 「「「」」」 「「」」」 「」」 「」」」 「」 「	·····································		
Ri 0 0 Ri2 0 0 Ri3 0 0	U1 KE:2. U2 KE:16	445e+006 CE:0 Kc:2.44 81 CE:0 K:9290 KY:90.	5e+006 Kt:240000 A=0.3 2 KYR:0.1
注意:若定义了节点局部坐标系则取 局部坐标系下音轴	<u> </u>	81 CE:0 K:9290 KY:90.	2 KYR:0.1
Å			

非隔震模型:

将复制的另一份模型打开,在前处理将隔震层柱底全部设置铰接属性。此即为非隔 震模型。

(三) 用中震计算水平向减震系数β流程

《建筑抗震设计规范理解与应用》419页关于减震系数的计算方法说明:"计算隔 震与非隔震两种情况的层间剪力,宜采用基本设防水准下地震作用进行时程分析。"

《抗震规范统一培训教材》P176: "计算水平减震系数的隔震支座参数,橡胶支座的水平剪切应变由 50%改为 100%,即可近似认为从对应"小震"的变形状态放宽到"中

震"的变形状态,支座的等效刚度比 2001 规范减少,计算的隔震效果将更明显。"

《乌鲁木齐建筑隔震技术应用规定》第2.2.4条:确定减震系数时按中震计算;需考 虑近场影响时地震波输入应考虑近场影响系数(确定减震系数时与之对比的非隔震模型 亦应按中震并乘以近场影响系数计算)。

因此,以下为计算β对非隔震模型和隔震模型的时程分析计算应采用设防地震即中震 的地震影响系数。

(1) 非隔震模型进行中震下的计算(一般弹性时程法);

在这里选择地震波;

(2) 隔震模型进行中震下的计算(可用一般弹性时程中的 FNA 法,也可用直接积 分法);

(3)人工对比(2)和(1)的各层剪力值(一般为多条波包络值),取较大值,作 为水平向减震系数β。并按规范公式 12.2.5 求出αmaxl。

(四) 非隔震模型和隔震模型的中震反应谱计算

为了计算出水平向减震系数β,需要分别对非隔震模型和隔震模型进行时程分析计算, 但是在 YJK 中,弹性时程分析是需要接力反应谱计算的,因此对两个模型的反应谱计算 除了基本的设计参数设置外,还应在地震计算参数中,按照中震计算的要求设置地震影 响系数最大值。

按照《高规》4.3.7-1,在下图的地震计算参数中,修改"地震影响系数最大值"参数值,填入8度半的值0.68。

115

(五)非隔震模型进行中震下的弹性时程计算

非隔震模型完成上部结构的"生成数据+全部计算",此为中间结果,不是最终结果, 即(四)。然后进入"弹性时程新"菜单,需在这里选择地震波,并进行中震下的弹性 时程计算。

注意要把在弹性时程参数"主方向峰值加速度"中输入中震下的峰值加速度。

模型荷	载输入	前处理及计	算 设	计结果	弹性时	相分析(新)	弹性	时程分析	直接积	分法时程	楼板及设	备振动 一 预成
1		F	R	R	ſff	F	4		1			÷
用户波 人工 导入 生	した 波 地高が 近 海 振	1 工况定义	工况组合	计算	节点变形	楼层结果	连接单元	能量曲线	隔震支座	隔震层	隔震送审报告	反应谱规范谱 ▼
自定义地震	波	前处理		计算		后初	心理			隔晨验	算	对比图

				1	0.01
	添加地震波	删除选	中地震波	起始周期	0.01
	名称	10		终止周期	6
1	Superstition Hil	Lls-01_N0_718, Tg(0	周期步长	0.02	
2	Chi-Chi, Taiwan-	-06_NO_3265, Tg(0.4	特征周期(s)	0. 45	
3 ArtWave-RH2TG045, Tg(0.45)				参与振型数	30
				设防烈度	8 (0.3g)
				地震水准	设防地震·
1.5		和分先长(s)	0.02		0.00
积分	殆时长(s) 35			地震影响系数最大值	0.68
积分 结构	相时长 (s) 35 阻尼比 (%) 今继续—		,中震	地震影响系数最大值 峰值加速度类型:	• PGA C EPA
积分 结构 ③ 1 ① 1	市村长(s) 35 阻尼比(%) 全楼统一 该材料区分	钢	<mark>。中震</mark> 2	地震影响系数最大值 峰值加速度类型: 主方向峰值加速度(cm	0.68 • PGA
积分 结构 (③) (○) 打	相すた(s) 35 阻尼比(%) 全徴統一 该材料区分	約 混凝土	<mark>5 中震</mark> 2 5	地震影响系数最大值 峰值加速度类型: 主方向峰值加速度(cm 次方向峰值加速度(cm	● PGA ● EPA →/s ²) 300 →/s ²) 255

用非隔震模型选波还需要满足隔震模型统计意义上相符的要求,选波在另一个章节 中详细介绍。本工程选3条波。

2条天然波:

Superstition Hills-01_NO_718,Tg(0.43)简称 CCT

Chi-Chi, Taiwan-06_NO_3265,Tg(0.47)简称 CV

1条人工波:

ArtWave-RH2TG045,Tg(0.45)简称 AWR

计算完成后,可以在"时程结果"中查看"每条波"0度和90度中的楼层剪力:

弹性时程分析(新) 弹性时程分析 直接积分法时程 楼板及设	振动 反应力 工具箱 硼体设计 基础设计 施工图设计 预制物件施工图 极结构图 非线性计算 二维图形编辑 G	
节点变形 楼层结果 连接单元 能量曲线 脑震支座 隔离层 隔离送前报告	反应遵规范遵	
* *	NHUM	
		·
X 4 制四 第1日		被屈指标
	展号 FXの1扱(1) FYの1扱(1) FXの1扱(5) FYの1扱(5) FXの1扱(9) FYの1扱(9)	横原位移
	1 18743.518335 129.488101 21166.084163 100.612311 18567.617261 102.980140	開創位移角
())	2 17567.079267 128.181633 19176.470754 99.070546 17272.580305 100.906978 3 15051 530018 115 381070 15461 774556 88 503060 15655 831577 89.660640	特层高距 面の施力
6	4 12369.449294 91.429828 12721.322831 69.146914 12216.339532 70.638512	
	5 7681.037230 52.933965 7514.940273 40.139975 8237.366576 41.809934	「市政宗社
	6 2055.659185 12.143443 2037.898089 9.163062 2220.345541 9.885047	
5	依次对应三条波结果	计算万法: 直接积分法 (DI) ▼
		组合: 1:恒0.0活0.0 PGA 300.0+0.0+(▼
		被层最大响应
		时程工况
4		ArtWave-RH2TG045,Tg(0.45)
		Chi-Chi, Taiwan-05_NO_3265,Tg(0.4 Superstition Hills-01_NO_718,Tg(0.4)
		< →
3		法择探号: 第1号塔 ▼
		◎ 単工況 ◎ 包絡値
		□ 平均值 □ cqc结果
		应用 表格
		被抵时推出33 法 (3.11)口
		ASTR LAG
		Mrtwave+ch216045,1g(0.45)
	生成Excel 动流	层号: 1 ▼ 塔号: 1 ▼
	E.pp. No.1	A

弹性时程分析(新) 弹性时程分析 直接积分法时程 楼板及设备	动 预应力 工具箱 硼体设计 基础设计 施工图设计 预制物件施工图 网络构图 非线性计算 二维图形编辑	•
	4 <u>0</u>	
即形実格 阿爾拉算	对比图	
文本榕田		
关闭		機层指标
	E목 FXe1塔(3) FYe1塔(7) FXe1塔(7) FXe1塔(11) FYe1塔(11)	楼屋位移
	1 20767-405447 129.488011 23646.282360 100.612180 19347.275899 102.979672	居间位移角
(#)	2 20067.606073 126.644355 21549.890802 98.724972 18218.722542 101.086583	楼屋會矩
6	3 16602.651401 111.881509 18505.267042 87.636513 15570.643378 90.143327	(Height 7)
	4 13370.576481 84.704257 14253.420445 67.405160 11795.504982 71.042440	辅选条件
	3 0413-000306 19:793347 0422-805007 35:1390347 0177-07762 45:133176 6 7199 (9270)6 11 964270 1071 1214127 831051 2756 304576 9 97054	主波与X轴夹角: 主波[90.0] 度方向 ▼
		计算方法: 直接积分法(DI) ▼
5		
· · · · · · · · · · · · · · · · · · ·		组合: 1:恒0.0活0.0 PGA 300.0+0.0+(▼
		被层最大响应
		时程工况
		ArtWave-RH2TG045,Tg(0.45)
		Chi-Chi, Taiwan-06_NO_3265,Tg(0.4
		Superstition Hils-01_NO_718,Tg(0.4:
7		
		法择塔号: 第1号塔 ▼
		◎ 単工況 ◎ 包络值
		□平均值 □ cqc结果
		ctm +4
2		
		被屈时程曲线
		选择工况
		ArtWave-RH2TG045,Tg(0.45)
	生成Excel 确定	展号: 1 ▼ 描号: 1 ▼
		jan eese

(六)隔震模型进行设防地震下的弹性时程计算

对隔震模型也进行弹性时程新的计算,使用在非隔震模型中同样的地震波,使用中 震下的峰值加速度,操作过程同如上非隔震模型,得到隔震模型的楼层剪力,如下图:

改据表	1000					
		19 11	-	4	-	10
层号	FX@1塔(1)	FY@1塔(1)	FX@1塔(5)	FY@1塔(5)	FX@1塔(9)	FY@1塔(9)
1	5350.758054	5453.157051	6454.956719	13785.181695	5000.374627	6228.585855
1	4328.359279	4252.023386	5414.389561	10873.804699	4186.767496	5048.037375
2	3615.168303	3319.997220	4443.657968	8372.849907	3987.592423	3936.697828
3	2808.490742	2551.633724	3274.158323	5910.192744	3305.205558	2759.633785
4	1712.617398	1697.423757	1854.347345	3278.572790	2064.388079	1498.836777
5	427.442716	457.889760	416.550930	719.426251	521.521230	385.592791
6	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000

第四章 隔震结构分部设计法软件实现流程

歴史 FX@1描(3) FY@1描(3) FX@1描(7) FY@1描(7) FY@1描(7) FY@1描(1) 1 5402.598167 5456.42507 5320.600479 13854.139336 4963.272741 6155.722243 1 4327.02813 4382.599886 5400.047393 11077.396137 4275.953161 4920.357276 2 30907.379886 2573.021561 3228.208652 6048.50533 418.075575 3 3007.739886 2573.021561 3228.208652 6048.500644 3466.591169 2614.935163 4 1847.84464 151.305119 1827.337754 3287.216174 2188.41844 1431.872554 5 459.315772 403.84932 738.21721 553.5552 371.173755 6 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
1 5402.398107 165.302.600479 1385.419393 4403.277741 6105.722243 1 4327.02318 4382.598866 5400.04793 1384.19393 4403.277741 6105.722243 2 3609.31565 2511.22363 4421.11563 4252.16533 4153.057518 4200.357276 3 3007.738982 2573.021561 3220.208652 6048.560664 3466.991169 2614.936163 4 1847.884640 1513.805119 1827.337754 3287.216174 2188.418494 1431.872954 5 493.315772 401.303814 408.494342 322.6217 553.555592 371.143755 6 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
1 4327.028138 4382.599886 5400.047393 11077.396137 4275.953518 4920.357276 2 3609.31565 3511.223063 4421.11653 8625.91533 4185.078653 371.765575 3 3007.738988 273.021561 323.00654 945.91169 261.439.6163 4 1847.888640 1513.805119 1827.337754 2287.2165174 2188.418484 1431.872954 5 459.315772 401.303814 408.948342 703.216217 555.536592 371.143765 6 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
2 3609.31655 3511.223063 4421.116563 9625.916533 4165.078853 3781.765575 3 3007.73986 2573.021561 3238.208652 6048.50064 3465.991169 2614.936163 4 1847.88440 1513.305119 1227.313774 3237.11571 2138.148484 1431.72594 5 459.315772 401.303814 408.948342 703.216217 553.355592 371.143765 6 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
3 3007.738988 2573.021561 3238.208652 6048.560664 3486.991169 2614.938163 4 1847.88469 1513.805119 1827.337754 3287.216174 2188.418496 1431.672554 5 499.315772 401.30314 408.49342 732.216174 2188.418496 1431.672554 6 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
4 1847.8884640 1513.805119 1827.337754 2287.216174 2188.418484 1431.872954 5 459.315772 401.303814 408.48342 703.216217 555.56592 371.143765 6 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
5 459.315772 401.303814 408.948342 703.216217 553.526592 371.143765 6 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
6 0.000000 0.000000 0.000000 0.000000 0.000000

(七)人工对比两个模型时程分析结果得出β

人工对比每条波隔震和非隔震的上部结构各楼层剪力值,所有比值中取最大值作为 水平地震减震系数,如下图:

90度	非隔震	隔震		非隔震	隔震		非隔震	隔震	
	A	RT	β	C	HI	β	S	UP	β
1	20767.405	5402.598	0.260	23646.282	6320.600	0.267	19347.276	4963.274	0.257
2	20067.606	4327.028	0.216	21549.891	5400.047	0.251	18218.723	4275.954	0.235
3	16602.651	3609.316	0.217	18505.267	4421.117	0.239	15570.643	4185.079	0.269
4	13370.576	3007.739	0.225	14253.420	3238.209	0.227	11795.505	3486.991	0.296
5	8415.603	1847.885	0.220	8422.986	1827.338	0.217	8177.867	2188.418	0.268
6	2089.087	459.316	0.220	1971.214	408.948	0.207	2265.308	553.527	0.244
0度	非隔震	隔震		非隔震	隔震		非隔震	隔震	
	A	RT	β	C	HI	β	S	UP	β
1	18743.518	5350.758	0.285	21166.084	6454.957	0.305	18567.617	5000.375	0.269
2	17567.079	4328.359	0.246	19176.471	5414.390	0.282	17272.580	4186.767	0.242
3	15061.520	3615.168	0.240	16461.775	4443.658	0.270	15635.832	3987.592	0.255
4	12369.449	2808.491	0.227	12721.323	3274.158	0.257	12216.340	3305.206	0.271
5	7681.037	1712.617	0.223	7514.940	1854.347	0.247	8237.367	2064.388	0.251
6	2065.659	427.443	0.207	2037.898	416.551	0.204	2220.346	521.521	0.235

并按规范公式 12.2.5 求出 α maxl; 8 度(0.3g)小震 α max=0.24 β=0.305

调整后的水平向减震系数β/ψ=0.305/0.8=0.381

求出隔震后的多遇地震的水平地震影响系数最大值αmaxl=αmax/ψ=0.24*0.381=0.0915

按照《抗规》12.2.5条文说明中表 7 对比,此模型设置隔震垫后结构能达到降一度的目标,即从 8 度 0.3g 降低到 7 度 0.15g。

本地区设防烈度	水平向减震系数 β						
(设计基本地震加速度)	0.53≥β≥0.40	0. 40>β>0. 27	β≤0.27				
9 (0.40g)	8 (0.30g)	8 (0.20g)	7 (0.15g)				
8 (0.30g)	8 (0.20g)	7 (0.15g)	7 (0.10g)				
8 (0.20g)	7 (0.15g)	7 (0.10g)	7 (0.10g)				
7 (0.15g)	7 (0.10g)	7 (0.10g)	6 (0.05g)				
7 (0.10g)	7 (0.10g)	6 (0.05g)	6 (0.05g)				

表 7 水平向减震系数与隔震后结构水平地震作用所对应烈度的分档

抗震构造和抗震措施按照 12.2.5 和 12.2.7 条文说明,β=0.305 小于 0.4,按降低 1 度,即 8 度 0.3g 降低到 7 度 0.15g。抗震等级按照降低 1 度后的烈度取值。

水平向减震系数 本地区设防烈度 (设计基本地震加速度) B>0.40 B<0.40 9 (0.40g) 8 (0.30g) 8 (0.20g) 8 (0.30g) 8 (0.20g) 7 (0.15g) 8 (0.20g) 7 (0.15g) 7 (0.10g) 7 (0.15g) 7 (0.10g) 7 (0.10g) 7 (0.10g) 7 (0.10g) 6 (0.05g)

表 8 水平向减震系数与隔震后上部结构抗震措施所对应烈度的分档

注意:1、按规范要求,β小于 0.3 应考虑竖向地震,此例暂不考虑竖向地震,如果 要考虑可参见十所述。

2、有些专家更加认可时程分析的直接积分方法,此时也可采用直接积分法,YJK 同时提供此种算法,详细过程此处不再赘述。

(八) 非隔震模型输入αmaxl 的反应谱法计算

在非隔震模型中输入αmaxl 并进行反应谱法计算,得到上部结构的配筋结果。

由于计算β值时采用的是中震计算,而这里采用的是小震的大量变动的参数,可把非 隔震模型再复制一份,在新复制的非隔震模型上完成这里的设计。

打开非隔震模型,在上部结构计算参数中设置"调整后的水平向减震系数β/ψ"为 0.381,并按照《抗规》12.2.7 第2条抗震措施降低1度,按照7(0.15g)高度小于24m 得到抗震等级为二级(乙类建筑提高一级)。

隔震后上部结构的抗震措施可以适当降低,一般的橡胶支座以水平向减震系数 0.40 为界划分,并明确降低的要求不得超过一度,对于不同的设防烈度如表 8 所示:

本地区设防烈度	水平向减震系数				
(设计基本地震加速度)	β≥0.40	β<0.40			
9 (0.40g)	8 (0.30g)	8 (0. 20g)			
8 (0.30g)	8 (0.20g)	7 (0.15g)			
8 (0.20g)	7 (0.15g)	7 (0.10g)			
7 (0.15g)	7 (0.10g)	7 (0.10g)			
7 (0.10g)	7 (0.10g)	6 (0.05g)			

表 8 水平向减震系数与隔震后上部结构抗震措施所对应烈度的分档

表 6.1.2 现浇钢筋混凝土房屋的抗震等级

休休米 到		设防烈度							
2	되何失望		6		7		8	9	
框架 结构 大	高度 (m)	≤24	>24	≪24	>24	≤24	>24	≤24	
	框架	四	Ξ	Ξ	=	=	-		
	大跨度框架	Ξ		=					
			Y						

此时参数如下图所示。

物首体信息	┐ - 地震信息 > 地震信息		
竹志体信息 算控制信息 控制信息	 设计地震分组: ○一 ●二 ○三 □ 培新区划图计算 	结构阻尼比(%) ●全楼统一	5
刚度系数 二哈弥应		□ ○ 按材料区分 靜	2
分析求解参数	1Z-W/X CI	型钢混凝土 5 港	見凝土 5
倚载信息 基本参数 指定风荷载	特征周期 0.4	【偶然偏心】 【 【 】 「 】 「 】 」 【 】 【 】 】 【 】 】 【 】 】 】 】 】 】 】 】 】	0.05
吉住 自	周期折减系数 1		
地震信息		● 等效扭矩法(传统法)	
地震作用放大系数	分析类型 WYD-RITZ ~	○瑞利─里兹投影反射谱法(新	算法)
性能设计 性能包络设计	 用户定义振型数 18 	□ 老虎观向地震作用	
隔震減震	○程序自动确定振型数		<i>0</i> -m
计信息 荷载信息	质量参与系数之和(%) ⁹⁰	☑ 自动计具载不利地震力回的地震1	作用
件设计信息	最多振型数量 150	科交換收的熱層的農地震影响	向系数最大
构件设计信息 钢构件设计信息	隆低烈度后	的「活荷载重力荷载代表值组合系数」	0.5
络设计	山技主振型明定地震的力付ち		0.24
料信息 封料条数		1 用于12层以下规则砼框架结构海频层	1.2
钢筋强度	剪力墙抗震等级 二级 ~	, 孤身口地展影响赤奴取入值 坚向地卖作田玄粉底线值	0.15
下室信息	钢框架抗震等级 二级 ~		e 🕀
转组合 组合系数	抗震构造措施的抗震等级	□ 地辰计算时不有隐地下至时结构	风里
组合表	□ 提高一级 □ 降低一级		
目定义上况组合 完加周	□ 框支剪力 遺结 构底部加强区剪力 遺抗震調	等	
配式	□ □ 级目动提高一级 □ □ 地下——————————————————————————————————	æ	
	□ 层降低及抗震措施四级		
	□ 局部模型反应谱法计算竖向地震时 考虑水平质量		
	田白宁义塩刑教・		
	选择该参数,用户可指定计算振型个数。《	抗震规范》5.2.2条 条文说明中指出: 振雲	世个数一般可以
	前振刑条与后留 认到首后角90%所需的振刑粉	· 《 三报 》5 1 13条 抑完· 抗营设计时,	B纪宣度的宣

YJKCAD-参数输入-地震信息 > 隔震减震

X

抗震等级降低后,抗震构造等级默认跟着降低,为了保证轴压比按原来的抗震构造 措施走,要在特殊构件定义中定义差值。

规范规定抗震构造措施不降低,在前处理特殊构件定义中按不降低烈度的指定轴压 比限值。按照抗规表 6.3.6,一、二级柱轴压比限值差 0.10,所以需要指定轴压比限值减 小 0.10 达到抗震构造措施一级标准。

	and the second sec			Contraction of the second s			
6+ +4	抗震等级						
竡 构 尖 型		=	Ξ	29			
框架结构	0.65	0.75	0.85	0.90			
框架-抗震墙,板柱-抗震墙、 框架-核心筒及筒中筒	0. 75	0.85	0.90	0.95			
部分框支抗震墙	0.6	0.7					

表 6.3.6 柱轴压比限值

这里得到上部结构的最终的设计结果。

第四章 隔震结构分部设计法软件实现流程

三、上部结构设计-隔震模型直接计算

有了隔震模型为什么还用非隔震模型考虑减震系数来设计?这也是很多设计师的疑问。

最主要原因是对于按小震进行设计的隔震结构,减震系数法是《抗规》上明确规定 的计算方法,已做的工程普遍都是采用这个方法来做的设计。

其次如果用隔震模型来做,设计还需要反应谱法来做设计,反应谱必然用到隔震支 座的线性参数(即刚度和阻尼),但是用户输入的线性参数对计算结果的影响很大。由 于隔震支座本身是非线性单元,相同规格的减震器,在同一结构中可能提供不同的有效 刚度和阻尼,因为减震器的有效刚度和有效阻尼与地震波,地震方向,地震波峰值加速 度,安装位置,局部方向(U1, U2, U3)均相关,用户很难手算或者估算比较准确的等价 线性参数,所以对隔震模型采用用户直接输入的线性参数常常得不到准确合理的结果。

对于这个问题,软件在减隔震元件有效刚度和有效阻尼中提供两种可行的解决方案, 即迭代确定和自动采用弹性时程计算结果。

当选择"迭代确定",软件按照用户输入的非线性参数进行反应谱迭代计算,得到 隔震元件的等效刚度和等效阻尼。 当选择"自动采用弹性时程计算结果",软件在弹性时程模块提供了按照时程分析 结果自动计算减隔震元件有效刚度和阻尼的功能,选择该项,反应谱计算可自动读取弹 性时程计算的有效刚度和阻尼结果,接力反应谱进行地震作用计算,选择该项时,用户 应首先在弹性时程模块中完成计算并勾选"计算减/隔震元件有效刚度和阻尼"选项。

以下主要介绍一下自动采用弹性时程计算结果方法,其实现的流程为:

1、 隔震模型中震反应谱法计算,此为中间步骤;

2、 隔震模型进行中震直接积分法时程计算,得到耗能曲线和隔震支座的滞回曲线, 并计算出每个隔震支座的有效刚度和有效阻尼;

3、 返回到反应谱计算参数中,勾选"读取直接积分时程法算的得减/隔震元件有效 刚度和阻尼",再次进行反应谱设计。

这里重点说下第2和第3步的流程。

(一)YJK 隔震模型采用直接积分法时程分析计算隔震支座的有效 刚度和阻尼

隔震支座厂家提供的参数是隔震支座的非线性参数,由这些参数不能直接得出隔震 支座提供给结构的有效刚度和阻尼。在反应谱法计算带有减震的结构时,由于隔震支座 的这种非线性属性,对同一规格的隔震支座不能采用同样的有效刚度和阻尼。

采用直接积分法对结构进行时程分析,而后针对每根隔震支座构件的位移时程曲线, 速度时程曲线,内力时程曲线,滞回曲线等计算结果,自动为每根构件的每个方向计算 有效刚度和有效阻尼。

操作步骤

对于设有隔震支座的结构模型,用户可进入直接积分法,点击"计算参数",导入 波(建议采用与规范谱贴合较好的人工波,可选多条)。

当用户定义了多条波多个工况计算时,软件对于等效参数的确定遵循下列规则: 当不勾选"计算与输出参数"时中的"等效参数取多条波的平均值"时:对每一个

125

隔震支座,程序遍历每个工况,取该支座内能最大的工况,根据该工况下的滞回曲线计 算该支座的有效刚度和有效阻尼,将其作为该支座的有效刚度和有效阻尼系数结果进行 输出。

当勾选"计算与输出参数"时中的"等效参数取多条波的平均值"时:程序对每个 工况分别计算一次等效参数,对 X 向等效参数,取所有 0 度工况的平均值,对 Y 向等效 参数,取所有 90 度工况的平均值。

计算完成后可以得到该时程分析下隔震支座的滞回曲线和耗能曲线。

(二)隔震模型反应谱法计算设计-整体计算中使用自动计算的有效刚度和阻尼

对于隔震结构,一般采用反应谱法进行最终的设计计算,YJK 可在反应谱法地震计 算时,自动读入前面直接积分法时程计算出的每根隔震支座不同的有效刚度和阻尼。

在"上部结构计算---前处理及计算"模块中,点击"计算参数---地震信息-隔震减震",

勾选"自动采用弹性时程计算结果"选项后,软件会自动使用弹性时程中直接积分法计 算得到的有效刚度有效阻尼进行整体结构计算,这种情况下,用户在前处理连接属性参 数中输入的有效刚度和阻尼将不再起作用。

如果未在弹性时程中进行直接积分法计算有效刚度和阻尼的步骤,软件依旧采用用 户输入的有效刚度和有效阻尼进行计算。

然后再进行上部结构的"生成数据+全部计算",完成上部结构的设计计算。得到上 部结构构件的设计结果。

对于这种读入直接积分法时程结果的有效刚度和阻尼,用户可在计算结果的"构件 编号"菜单下查看。可以看到每个隔震支座有效刚度和有效阻尼的结果,如图所示。

(三)YJK 对于非地震荷载工况仍采用隔震支座的线性刚度

由于隔震支座的非线性属性,他在地震荷载下和非地震荷载下的刚度是不同的,前 面直接积分法计算出的有效刚度和阻尼是针对地震力的大小计算出的,因此应限于地震 工况使用。

当用户在地震计算参数中选择了参数"连接单元的有效刚度和阻尼采用直接积分法 时程计算结果"时,软件仅在地震计算工况下,对隔震单元采用读入的直接积分法时程 计算的有效刚度和阻尼,但是对于非连梁折减模型的非地震工况,不采用这个有效刚度 和阻尼。

对于恒活风等的非地震荷载工况,软件对隔震支座的有效刚度,仍采用该隔震构件 参数中的线性参数中的有效刚度,而对于阻尼,仍采用其他非隔震支座同样的阻尼。

(四) 计算公式

(1) 有效刚度的计算

$$k_{eff} = \frac{\int_0^t F \Delta u dt}{\int_0^t \Delta u^2 dt}$$

式中 F 和 Δu 分别为 t 时刻隔震支座内力与相对变形, k_{eff} 为有效刚度。

1.9 版本将增加割线刚度选项。

(2) 有效阻尼的计算

计算隔震支座的有效阻尼前,先要计算全程的内能 E_{in}(也即滞回曲线与坐标轴所围的面积)、构件最终的弹性应变能 E_{elas}。式中 k_{initial} 是隔震支座的弹性刚度,F_{fn} 是隔震支座最终时刻的受力。

$$E_{in} = \int_0^t Fd(\Delta u)$$
$$E_{elas} = \frac{1}{2} \frac{F_{fin}^2}{k_{initial}}$$

此时根据阻尼耗能的公式,式中 c 为阻尼系数,ceff 为有效阻尼。

$$E_{in} - E_{elas} = \int_{0}^{t} cv du = \int_{0}^{t} cv^{2} dt = c_{eff} \int_{0}^{t} v^{2} dt$$
$$c_{eff} = \frac{E_{in} - E_{elas}}{\int_{0}^{t} v^{2} dt} = \frac{\int_{0}^{t} Fd(\Delta u) - \frac{1}{2} \frac{F_{fin}^{2}}{k_{initial}}}{\int_{0}^{t} v^{2} dt}$$

四、隔震层设计-FNA法

隔震层设计包括两部分,分别是隔震支座的验算及支墩的设计。

采用隔震模型大震下时程计算。

(一) 隔震支座验算

(1) 相关规范

《抗规》12.2.3 隔震层的橡胶隔震支座应符合下列要求:

1 隔震支座在表 12.2.3 所列的压应力下的极限水平变位,应大于其有效直径的 0.55

倍和支座内部橡胶总厚度3倍二者的较大值。

• • • • • •

3 橡胶隔震支座在重力荷载代表值的竖向压应力不应超过表 12.2.3 的规定。

表 12.2.3 橡胶隔震支座压应力限值

建筑类别	甲类建筑	乙类建筑	丙类建筑		
压应力限值(Mpa)	10	12	15		

《抗规》12.2.4

1 ….其橡胶支座在罕遇地震的水平和竖向地震同时作用下,拉应力不应大于 1Mpa。

《乌鲁木齐建筑隔震技术应用规定》第2.4.2 隔震支座承载力验算:

1.隔震承载力验算包括承压验算和受拉验算。

2.承压验算:

 1)重力荷载代表值下计算平均压应力设计值限值按抗规表 12.2.3;一般可仅按重力 荷载代表值计算;

2)对需进行竖向地震作用计算的结构(见 2.3.4),上述重力荷载代表值下压应力 尚应包括竖向地震作用效应组合;

3) 隔震支座重力荷载代表值的竖向压应力设计值可按下式计算:

压应力设计值=1.0 恒载+0.5 活载+竖向地震作用下产生的竖向压力(竖向地震作用 取标准值并按 2.3.4.2 取值;不需考虑竖向地震作用时此项为零)。

4) 隔震支座在罕遇地震作用下的最大压应力不宜大于 25MPa;其值可按下式计算: 最大压应力=1.0 恒载+0.5 活载+罕遇地震水平作用产生的最大轴压力(标准值)+0.5 竖 向地震作用产生的轴向压力(竖向地震作用取标准值并按 2.3.4.2 取值)≤25MPa

3. 受拉验算

1) 罕遇地震下隔震支座最大拉应力应控制在 1MPa 以内;

2) 隔震支座受拉验算时应包括竖向地震作用效应(按 2.3.4.2 取值);

3) 隔震支座在罕遇地震作用下最大拉应力可按下式计算:

最大拉应力=1.0 恒载+0.5 活载+罕遇地震作用产生的最大轴拉力+0.5×竖向地震作 用产生的轴拉应力(为标准值,取值按 2.3.4.2)≤1MPa

《建筑隔震设计标准》:

表 6.2.1-1 隔震橡胶支座在罕遇地震下的最大竖向压应力限值(Mpa)

建筑类别	特殊设防类建筑	重点设防类建筑	标准设防类建筑
压应力限值(Mpa)	20	25	30

表 6.2.1-2 隔震橡胶支座在罕遇地震下的竖向拉应力限值(Mpa)

建筑类别	特殊设防类建筑	重点设防类建筑	标准设防类建筑	
拉应力限值(Mpa)	0	1.0	1.0	

注:隔震橡胶支座验算罕遇地震作用下最大压应力和最小压应力时,应考虑三向地 震作用产生的最不利轴力。

最大压应力=1.0*恒载+0.5*活载+罕遇水平地震作用产生的最大轴力+0.4*竖向地震 作用产生的轴力;

最小压应力=1.0*恒载-1.0 罕遇水平地震作用产生的最大轴力-0.5*竖向地震作用产 生的轴力

软件实现流程:

1、复制一份隔震模型,对此模型进行大震的时程(弹性时程的 FNA 法或直接积分法)计算;

2、得到各组合下各隔震垫的内力(含剪力、拉力、压力)、隔震支座的拉、压应力 及位移;

3、人工将支座拉压应力和规范限值比较,是否满足要求;

4、用此过程得到支座反力,用软件建立独立柱或者工具箱或者手核对支墩进行设计。 此部分在后边会有详细介绍。

(2) 对隔震模型的大震时程计算

复制一份隔震模型,对此模型进行在大震的时程(FNA 法或直接积分法)计算,本例用 FNA 法。

选用计算水平向减震系数β时同样的地震波。

在弹性时程参数"主方向峰值加速度"中输入大震下的峰值加速度。

(3) 设置相关工况组合

设置需要查看内力及应力的组合,如下图:

按简化算法计算竖向地震时,可按如下设置组合;

压应力: 1.0D+0.5L

最大压应力: 1.0D+0.5L+1.0Fek+0.5*(0.3(1.0D+0.5L)) =1.15D+0.575L+1.0Fek

最大拉应力=最小压应力: 1.0D-1.0Fek-0.5*(0.3(1.0D+0.5L))

=0.85D-1.0Fek-0.075L

支座最大位移: 1.0D+0.5L+1.0Fek

按反应谱计算竖向地震时,可直接输入竖方向峰值加速度;

第四章 隔震结构分部设计法软件实现流程

里荷載着	入	前处理》	及计算	1 设	计结果	弹性时	1程分析	楼板及设	备振动	预应力	工具箱	砌休设计	† 1	出设计
				~		R	ſſſ	F	₽			t[]		
人工波	地震波	工况定	1× 1	L 况组合	计算与	计算	节点变形	楼层结果	连接单元	能量曲线	地震时正常	隔震支座	隔震层	隔晨送审报告
生成	过好年				制工梦奴	Via la Anton		•			使用短异		-	
也震波			前处	埋		计异			后处埋				隔炭粒	,异
		工况	列表											×
		1	第号			1	名称			分析方法	是否计	算		
			1		ArtWave	-RH2T	3045,Tg(0.	45) [0.0]		振型叠加济	± 🔽		增加	
			2		ArtWave-RH2TG045,Tg(0.45) [90.0]						± 🔽			
			3	C	hi-Chi, Taiw	van-06_	NO_3265,T	g(0.47) [0.0	D]	振型叠加》	ŧ 🔽		修改	
			4	Ch	ii-Chi, Taiw	an-06_N	NO_3265,T	g(0.47) [90	.0]	振型叠加》	ŧ 🔽			
			5	Su	perstition	Hills-01	_NO_718,1	「g(0.43) [0.	0]	振型叠加》	ŧ 🔽		删除	
			6	Su	perstition l	Hills-01	_NO_718,T	g(0.43) [90	.0]	振型叠加济	ŧ 🔽			
													重置	—⊳×
												_		
		17			_		_	_	_	_	_	-		
			注:	单击"重置	按钮后,程	序将根据	居选择的地震	震波生成默认	人的工况列表	長				
						确定	È		取	消				

模型荷载	輸入	前处理及计	算设	计结果	弹性时	相分析	楼板及设备振动	预应力 工具	箱 砌休设	設计 基础设	计施工	图设计 预制构件施工图
]			R	R	AA	P	÷ 🌠	1		-	-	
波 人工波	地震波	工况定义	工况组合	计算	节点变形	楼层结果	连接单元 能量曲线	隔震支座 隔震层	隔震送审报告	5 附加阻尼比	反应谱规范词	ŧ
、 生成	选择					-		•			-	
自义地震波		前处理	_	计算		后	心理	隔震發	ŝ算	减震计算	对比图	
			工况组合									×
			序号	恒载	系数	活载系数	峰值加速度类型	主方向峰值加速度	寛(cm/s2)	次方向峰值加速	度(cm/s2)	竖方向峰值加速度(cm/s2)
			1	0.	00	0.00	PGA	510		0.00	8	0.00
	7火≍	P位移	2	1.	00	0.50	PGA	510		433.5	5	0.00
	Ŀ	胚力	3	1,	15	0.575	PGA	510	· · · · · · · · · · · · · · · · · · ·	433.5	5	0.00
	打	立应力	4	0.	85	-0.075	PGA	510	3	433.5	5	0.00
重力	荷载作	代表值	5	1.	00	0.50	PGA	0		0.00	8	0.00
			注: 组合	1是用于	计算水平地	震作用的默	认组合。该组合不考虑 增加组合	竖向荷载作用,且不 删除组合	能被删除。]]]	取消	

然后进行弹性时程(FNA 法)计算。

说明:工况中可输入恒活荷载系数,恒活重力加载的内力为后续时程分析的初始内力;本例采用的竖向地震简化算法,当采用直接输入三个方向的峰值加速度时,此时应注意各向峰值加速度数值的设置,以最大压应力=1.0×恒载+0.5×活载+1.0×罕遇水平

地震作用产生的最大轴力+0.4×竖向地震作用产生的轴力为例,主向为 510gal,如果要 考虑双向地震,则次方向输入 0.85x510=433.5gal,竖向峰值输入 0.4x0.65x510=132.6gal, 其中 0.4 为组合系数,0.65 为竖向峰值加速度与主方向峰值加速度的比例系数;此处峰 值加速度可不考虑正负号,因为正负号仅代表地震动是在正向输入还是负向输入;**需要** 注意:当采用 FNA 法进行时程计算,并且采用输入竖向峰值加速度来考虑竖向地震时, 应在上部计算参数中选择反应谱方法计算竖向地震作用。

(4) 查看支座内力、应力

弹性时程计算完成后,得到隔震支座内力、位移、应力结果,内力为 kN,应力为 Mpa.

(1) 压应力验算:重力荷载代表值即 1.0 恒+0.5 活下,支座压力(U1)图:

重力荷载代表值 1.0 恒+0.5 活下,支座压应力值图,用户可和《抗规》表 12.2.3 的 上限值进行比较。

建筑类别	甲类建筑	乙类建筑	丙类建筑
压应力限值(Mpa)	10	12	15
	おり記 相切取合価値の 死の力 工具論 副新設計 副 注 こ こ こ こ こ こ こ こ こ こ こ こ こ こ こ こ こ こ こ	aich aibich Raibhaid Grabh d	就估计算 二酚酸钙钠铜 · ·
D=4 CSI=4 72 c12:00 D=8 CSI=4 72 c12:00 CSI=6:03 c12:00 CSI=6:16 c12:00	0-16 0-20 (30)=7.62 (12.10 (30)=7.63 (12.00	0-24 10-28 (50=6.16 <2.00 (50=6.03 <2.00	0-32 (39)=4.72 42,00 ● 単工紀 ◎ 包給値
	6-7 55-8 4 2 (2) 6	623. 524.50.4230 0.0000 0.0000 0.0000	bitIII bitIII bitIII bitIIII bitIIII bitIIIII bitIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
0=2 (59=5.03 <12;60 (59=7.34 <12;00 (59=7.34 <12;00 (59=7.34 <12;00	D=14 C30=7.63 c12.00 C30=7.75 c12.00	8+22 (30+7,13 ct2.00 (30+7,29 ct2.00	年期/2600(0002/1) □-30 (39-5.03 <12.00
		ф. в. 38MPa	日本五空方 20 10% 日本五空方 10% 日本五空方 10% 日本五空方 25.5% 10% 日本五空 日本五空 10% 日本五空 日本五空 日本五空 10% 日本五空 日本五空 日本五空 日本五空 日本五空 日本五空

表 12.2.3 橡胶隔震支座压应力限值

可见隔震支座最大压应力为 8.38Mpa,小于乙类建筑 12MPa,满足要求。

(2) 压应力验算:看含地震组合下的应力图,该地震即为大震结果,对于隔震支座的最大压应力按照《乌鲁木齐建筑隔震技术应用规定》第 2.4.2 条要求的不宜大于 25MPa 检查。

地震组合: 1.15D+0.575L+1.0Fek

第1条波X向地震组合下(可以通过时程工况选择查看不同地震波不同方向的压应力)

第四章 隔震结构分部设计法软件实现流程

三条波参与的组合下,最大的压应力为 10.000Mpa,小于 25Mpa,满足要求;

(3) 拉应力验算:人工和《抗规》12.2.4 条上的限值 1Mpa 比较,如果大于 1Mpa 则不满足规范要求;

地震组合: 0.85D-0.75L-1.0Fek 每条波的地震组合都应该看。

第 1 条波 CCT 参与的地震组合下: (可以通过时程工况选择查看不同地震波不同方 向的拉应力)

本例中所有组合下没有拉应力产生,最小压应力为 0.000Mpa。满足要求。

注:为了得到隔震支座的应力,必须在隔震参数中正确输入隔震支座的面积,如果 在参数中没有输入隔震支座的面积,隔震支座应力菜单输出的结果将是 0。

(5) 查看支座位移

使用"隔震支座位移"菜单查看各个隔震支座各条波参与的组合下的位移,按照《抗 规》12.2.3 隔震支座在表 12.2.3 所列的压应力下的极限水平变位的限值要求。

组合: 1.0D+0.5L+1.0Fek

(1)第1条波 CCT 的 X 向地震时位移图:(可以通过时程工况选择查看不同地震波不同方向的支座位移)

从各个位移图上取绝对值最大值填写到下表中。

大震时隔震结构各支座最大位移

	X 向-U3			Y 向 (U2)	
ССТ	CV	AWR	ССТ	CV	AWR
59.813 (27)	46.886 (27)	220.71(27)	59.161 (33)	46.542 (32)	208.452 (32)

由以上图形及表格可知,隔震层最大水平位移 220.71mm,小于 0.55D=275mm(D 为最小隔震支座直径,本工程采用隔震支座最小直径为 500mm)及 3Tr=300mm(Tr 为最小隔震支座的橡胶层总厚度,厂家参数给)中的较小值,满足要求。

说明:本例三条波的位移差异较大,是因为没有完全按照选波的四个条件来选。建议 用户做实际工程时应严格按照选波条件来选。以便得到合适的结果。

(二) 支墩设计

(1) 相关规范

《抗规》12.2.9 :

1、隔震层支墩、支柱及相连构件,应采用隔震结构罕遇地震下隔震支座底部的竖向 力、水平力和力矩进行承载力验算。

《乌鲁木齐建筑隔震技术应用规定》:

2.5.1 隔震层支墩、支柱及相连构件(相连构件一般指与支柱顶部相连的系梁、与支 柱相连的翼墙等构件),应采用隔震结构罕遇地震下隔震支座底部的最大剪力、最大轴 力和力矩进行承载力验算(如图示 2.5.1);其最大剪力、最大轴力可按以下组合 1 和组 合 2 的较大值采用:

组合 1=1.2(恒载+0.5活载)+1.3×水平罕遇地震+0.5×竖向地震(按 2.3.4.2 取) 组合 2=1.2(恒载+0.5活载)+0.5×水平罕遇地震+1.3×竖向地震(按 2.3.4.2 取) 隔震支座下支墩顶部产生的弯矩(H1为隔震支座高度): Mx1=(P×Ux+Vx×H1)/2, My1=(P×Uy+Vy×H1)/2

隔震支座下支墩底部产生的弯矩:

 $Mx=P \times Ux+Vx \times (H+H1)$, $My=P \times Uy+Vy \times (H+H1)$

《建筑隔震设计标准》:

最大压应力及支墩内力组合采用: 1.0*D+0.5L+1.0Fek+0.4Fvk 当竖向地震按简化的重力荷载代表值来取得话,可以用以下组合: 1.0D+0.5L+1.0Fek+0.4*(0.3(1.0D+0.5L))=1.12D+0.56L+1.0Fek

(2) 隔震层支墩、支柱的计算

取隔震支座验算结果的各组合下支座内力(轴力 u1,剪力 u2、u3)值,力矩按规 范手工核算。支墩设计建议用户采用此内力用软件建立独立柱或者工具箱手核。

找对应组合工况下的水平剪力,X向地震看 U3 内力分量:

找对应组合工况下的水平剪力,Y 地震看 U2 力分量:

第四章 隔震结构分部设计法软件实现流程

用户可根据支座高度等参数,在 YJK 中建立独立柱层,施加节点荷载进行设计计算。

将支墩内力按节点荷载施加,然后进行设计。得到支墩的配筋结果。

	 初日 日 日<th>びかけ件 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・</th><th>部计算 研研 〕 目 目 制 复制 一 二 一 一 一 一 一 一 一 一 一 一 一 一 一</th><th>其础设计 〒1 0 吊车 筒仓 ▼ 荷載 R在 第△</th><th>施工图设计 小池 谷板 荷载 荷载</th><th>ではない を行う 本のでの 本の 本のでの 本のでの 本のでの 本のでの 本のでの 本のでの 本の 本の 本ので 本ので</th>	びかけ件 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	部计算 研研 〕 目 目 制 复制 一 二 一 一 一 一 一 一 一 一 一 一 一 一 一	其础设计 〒1 0 吊车 筒仓 ▼ 荷載 R在 第△	施工图设计 小池 谷板 荷载 荷载	ではない を行う 本のでの 本の 本のでの 本のでの 本のでの 本のでの 本のでの 本のでの 本の 本の 本ので 本ので
● 光标 ● 轴线 ● 窗口 ● 国区 布置同类列荷载方式 ● 叠加 ● 覆盖 4710*650*	150*1914*144*00	荷载类型 节点 荷载 各称 节点坚何力[-2句]047) X向弯矩[[X平而]048*m) X向水平力047) Px X向水平力047) Py 水平扭矩[XY平而]048*m, 角度	 4710.00 650.00 150.00 1914.00 144.00 0.00 0.00 	 P Mx Px F	Z Y My Txy y	

五、隔震层设计-直接积分法

隔震层设计包括两部分,分别是隔震支座的验算及支墩的设计。

采用隔震模型大震下时程计算。

对于隔震层的计算需要考虑三向地震,应在"直接积分法"中交互输入三向地震波, 进行时程分析。

(一) 隔震支座验算

计算流程同如上的 FNA 法时程。

复制一份隔震模型,对此模型进行在大震的时程(直接积分法)计算。

选用计算水平向减震系数β时同样的地震波。

(1) 设置相关工况组合

设置需要查看内力及应力的组合,以新疆地标为例,如下图:

由于 YJK 目前的直接积分法可以同时施加竖向地震波。此功能为 YJK1.9 版本后才具

有,之前的版本需要一个项目一个项目的验算。

压应力: 1.0D+0.5L

最大压应力: 1.15D+0.575L+1.0Fek

最大拉应力=最小压应力: 0.85D-0.075L-1.0Fek

支座最大位移: 1.0D+0.5L+1.0Fek

弱号	名称	分析方法	是否计算	
1	ArtWave-RH2TG045,Tg(0.45) [0.0]	直接积分法	~	增加
2	ArtWave-RH2TG045,Tg(0.45) [90.0]	直接积分法	V	
3	Chi-Chi, Taiwan-06_NO_3265,Tg(0.47) [0.0]	直接积分法	V	修改
4	Chi-Chi, Taiwan-06_NO_3265,Tg(0.47) [90.0]	直接积分法	V	
5	Superstition Hills-01_NO_718,Tg(0.43) [0.0]	直接积分法	V	删除
6	Superstition Hills-01_NO_718,Tg(0.43) [90.0]	直接积分法	~	
注: 单	击"重置"按钮后,程序将根据选择的地震波生成默认的工况	列表		重置

模型荷载	論入	前处理及计	算设	计结果	弹性时	程分析	楼板及设	备振动	预应力	工具	育 砌休语	设计 基础设	計 施工	國設计	预制构件施工	褶
] 🐠		Ty	~	R	AH	F	4		1				<pre>b</pre>			
波 人工波	地震波	工况定义	工况组合	计算	节点变形	楼层结果	连接单元	能量曲线	隔震支座	隔震层	隔震送审报告	5 附加阻尼比	反应谱规范词	ŧ		
、 生成	选择					•				•			•	-		
2义地震波		前处理	_	计算		后外	心理			隔震验	算	减震计算	对比图			_
			工况组合													×
			序号	恒载	系数	活载系数	峰值加	速度类型	主方向峰	值加速度	(cm/s2)	次方向峰值加速	度(cm/s2)	竖方向峰	锋值加速度(cm/s2	2)
			1	0.	00	0.00	PGA			510		0.00	6		0.00	
	水	平位移	2	1.	00	0.50	PGA			510		433.	5		0.00	
	E	玉应力	3	1.	15	0.575	PGA			510		433.	5		0.00	
	ŧ	立应力	4	0.	85	-0.075	PGA			510		433.	5		0.00	
重力	荷载伯	弋表值	5	1.	00	0.50	PGA	2		0		0.00			0.00	
			注:组合	1是用于	计算水平地	震作用的默	认组合。该	组合不考虑	竖向荷载作	用,且不能	能被删除。	_				
							增加组合		删除组合		确定		取消			

然后进行弹性时程(直接积分法)计算。

(2) 压应力验算:重力荷载代表值即 1.0 恒+0.5 活

在计算参数中设置如下,将"时程分析时输入地震加速度的最大值"设置为 0(1.9 以及以后版本程序自动设置),即只有恒载活载施加,如下图。

(3) 最大压应力验算: 1.15D+0.575L+1.0Fek

这里需要考虑水平地震和竖向地震的同时作用,式中的 Fek 为水平地震,Fvk 为竖 向地震。

第四章 隔震结构分部设计法软件实现流程

11 III D=4 CSM=7.23 <25.00	D=8 D=8 	D=12 CSM+8.30 <25.00	0=16 CSM=8.93 <25.00	10=20 CSW=8.98 <25.00	ID=24 CSM=8.70 <25.00	0=28 CS₩=7.95 <25.00	D=32 CSM=6.73 <25.00	●単IR Ot
0=3	ID=7	0=11	0=15	0=19	10=23	0=27	0=31	A Statistics Sector Statistics A Statistics Sector Statistics CH-CH, Taiwan-05/10.3 Supersition Hile-01/10.7 Supersition Hile-01/10.7 Supersition Hile-01/10.7 Supersition Hile-01/10.7 Supersition Hile-01/10.7
CSM=819 (25:00	CSM=9.28 <25.00	CSM=913<25.00	CS#=9.79 <25.00	C9#=9.83 <25.00	CSM=9:53 <25:00	CSN=8.90 (25:00	C9#7.56 <25.00	
0=2	ID=6	ID=10	10=14	ID=18	10=22	0=28	D=30	 平遇地震振期应力 一初始荷敷的压应力 1 2 要大压应力 2
CSM=7.91 <25.00	CSM+10.00 <25.00	CSM=9.46<25.00	CSM≈8.87 <25.00	CSW=9.05 <25.00	C3M+9.85<25.00	CSM=9.52 <25.00	CSN=7.37 <25.00	
D=1	10=5	0=9	D=13	i0=17	10=21	D=25	D=29	最大拉应力 1 面影量示 3 罕遇地震水平位移 最大水平位移
C3M=6.85_<25_00	(5M=9.33 <25.00	CSM+8.57 <25.00	CSM=8.49 <25.00	034≠8.52 <25.00	C3M=8.98 <25.00	(SM=8.88<25.00	(5%=6.31 <25.00	
	<u>I</u>	T			1	Γ		面形显示 : 车遇地震内力图 方向(局部坐标系) ● U1 ● U2

查看三条波最大压应力为 10.000Mpa,小于 25Mpa,满足要求。

(4) 最大拉应力验算

最大拉应力=最小压应力: 0.85D-0.075L-1.0Fek

这里需要考虑水平地震和竖向地震的同时作用,式中的 Fek 为水平地震, Fvk 为竖向 地震。

隔震支座内力、应力结果,内力为 kN,应力为 Mpa; 位移 mm

U1、U2、U3分别为整体坐标系的Z向、Y向、-X向。

第1组波 X 向作为主方向的地震组合下最大拉应力:

第四章 隔震结构分部设计法软件实现流程

(5) 支座水平位移

《抗规》12.2.3 隔震支座在表 12.2.3 所列的压应力下的极限水平变位的限值要求。 支座最大位移: 1.0D+0.5L+1.0Fek

因竖向地震对水平位移影响不大,此时不考虑竖向地震,只考虑水平地震,第一条 波 CCT 波参与的地震组合下,最大水平位移如下图。

同理方式得到第2条、第3条波参与组合下的最大水平位移值,取3条波所有参与 组合中最大的位移值作为隔震支座的最大位移。最大位移小于0.55D=275mm(D为最小 隔震支座直径,本工程采用隔震支座最小直径为500mm)及3Tr=300mm(Tr为最小隔震 支座的橡胶层总厚度,厂家参数给)中的较小值,则隔震支座设计满足要求。

说明:本例三条波的位移差异较大,是因为没有完全按照选波的四个条件来选。建议 用户做实际工程时应严格按照选波条件来选。以便得到合适的结果。

(二) 隔震层支墩、支柱的计算

取隔震支座验算结果的各组合下支座内力(轴力 u1,剪力 u2、u3)值,力矩按规范 要求手工核算。支墩设计建议用户采用此内力用软件建立独立柱或者工具箱手核。

《抗规》12.2.9 条规定:与隔震层连接的下部构件(如地下室、支座下的墩柱等) 的地震作用和抗震验算,应采用罕遇地震下隔震支座的竖向力、水平力和力矩进行计算。

在直接积分法模块中,各波计算参数"时程分析时输入地震加速度的最大值"中输入大震下的峰值加速度 510cm/s2

这里选用与最大压应力验算相同组合,即按《建筑隔震设计标准》: 1.0*D+0.5L+1.0Fek+0.4Fvk

生成数据,然后计算,得到该组合下各隔震支座的水平位移、内力,如下图 找对应组合工况下的水平剪力,X 向地震看 U3 内力分量:

146

第四章 隔震结构分部设计法软件实现流程

找对应组合工况下的水平剪力,Y 地震看 U2 力分量:

用户可根据支座高度请参数,在 YJK 中建立独立柱层,施加节点荷载进行设计计算。

📕 非限展模型-卜部结构	到-甲辰
▶ 隔震模型-上部结构-	中震B
》 支墩悬臂柱模型	

将支墩内力按节点荷载施加,然后进行设计。得到支墩的配筋结果。

六、下部结构设计

(一)相关规范

《抗规》12.2.9 :

2、隔震层以下的结构(包括地下室和隔震塔楼下的底盘)中直接支承隔震层以上结构的相关构件,应满足嵌固的刚度比和隔震后设防地震的抗震承载力要求,并按罕遇地 震进行抗剪承载力验算。隔震层以下地面以上的结构在罕遇地震下的层间位移角限值应 满足表 12.2.9 要求。

《乌鲁木齐建筑隔震技术应用规定》:

2.5.2 隔震层以下的结构(包括地下室和隔震塔楼下的底盘及层间隔震的下部结构) 中直接支承隔震层以上结构的相关构件(指框架梁、柱及墙等构件),应满足嵌固的刚 度比(可理解为相关构件(下部结构指支承柱及与其相连的混凝土墙)组成的楼层刚度 比,并参照混凝土高规 E.0.1 进行计算;上下层嵌固刚度比可取不大于 0.5)和隔震后设 防地震下的抗震承载力要求,并按罕遇地震进行抗震承载力验算;下部结构中非直接支 承上部结构的构件均可按小震作用进行抗震设计。

2.5.3 隔震层以下地面以上的结构在罕遇地震下的层间位移角限值应满足抗规表 12.2.9 要求。

对下部结构目前可采用隔震模型计算也可以采用非隔震模型计算。

(二)下部结构设计过程—隔震模型

软件实现流程:

1、将隔震模型复制两份;

2、一个隔震模型进行大**震弹性**的反应谱法计算,得到配筋结果;

3、将另一个隔震模型进行**中震弹性**的反应谱法计算,并和 2 进行包络设计,取 2 的 斜截面验算配筋,取 3 的正截面验算配筋。由此得到下部结构构件的配筋设计结果。

	44971-11 隔宸模型 - 基础
	44971-11隔震模型-上部结构-中震
ł	44971-11隔震模型-下部结构-大震
J	44971-11隔震模型-下部结构-中震

由于是对隔震模型反应谱法计算,此时用到的是隔震支座的线性参数,即有效刚度、 有效阻尼,中震时应取剪切变形 100%的等效刚度和等效粘滞阻尼比。大震时,采用剪切 变形 250%时的等效刚度和等效粘滞阻尼比,当隔震支座直径较大时可以采用剪切变形 100%时的等效刚度和等效粘滞阻尼比。

(1) 隔震模型大震弹性的反应谱法计算

隔震支座对下部结构没有隔离地震的作用,所以其抗震等级还是按原设防烈度取。

控制信息	☑考虑性能设计				
制信息 度系数 险效应	地震水准 ○□	中震 💿 大	震		
析求解参数	选择大震不屈服;	设计时,软件将采	用材料强度极限	眼值设计	
载信息 本参数 定风荷载	 ●性能设计(抗) ○性能设计(高) 	砚) 正截面 不 ^风)	屈服 ∨ 料種	城面 鑽性 🔍 🗸	
信息	○性能设计(广)	东规程)			
定义影响系数曲线 雪作田动士系数	性能水准	1 02 🖲	3 04 0	5	
能设计	内件重要性系	数			
枢巴珀设计 震减震	关键构件系数			1.1	
信息	一般竖向构件	系数		1	
设计信息	水平耗能构件	系数(框架梁/连	梁) 0.6	0.6	
构件设计信息	一考虑钢筋起	蹬虽系数1.25			
设计 信息	☑ 按广东高规	见进行钢构件性能	设计		
料参数	□性能设计(《钢	结构设计标准》	(GB50017-2017))	
室信見 組合 今至数	性能等级	4 ~	延性等级	IV 🗸	
	耗能构件抗弯	刚度EI折减系数		1	
定义上况组合 加固	耗能构件轴向	刚度BA折减系数		1	
£	耗能构件性能	系数		0.55	
	非耗能构件内	力调整系数βe		1.32	
1	钧截而·				
	存 《抗规》 性能设计	时用户需要区分	斜截面为"弹性	"或"不屈服",这	2是为了适应用户对斜截面

但抗震等级还按原设防烈度设定,主要考虑其相关的构造要求。

当按中震或大震进行设计时,剪重比调整、0.2V0、薄弱层调整等都请不要勾选,因 为这些调整都是针对小震计算用的,不适用中大震,需手动不勾选。另外与抗震等级相 关的调整系数在勾选性能设计后程序自动不调整,分项系数等程序都是自动执行的,无 需用户干预。

隔震支座选用剪切变形 250%或者 200%时的有效刚度和有效阻尼。直径较大时也可 取剪切变形 100%时的有效刚度和有效阻尼。此例取 100%的有效刚度、有效阻尼。

生成数据+全部计算

得到大震性能设计的结果,其中斜截面是为弹性结果。

(2) 隔震模型中震弹性的反应谱法计算及包络设计

隔震支座对下部结构没有隔离地震的作用,所以其抗震等级还是按原设防烈度取。

抗震等级还按原设防烈度设定,主要考虑其相关的构造要求。

当按中震或大震进行设计时,剪重比调整、0.2V0、薄弱层调整等都请不要勾选,因 为这些调整都是针对小震计算用的,不适用中大震,需手动不勾选。另外与抗震等级相 关的调整系数在勾选性能设计后程序自动不调整,分项系数等程序都是自动执行的,无 需用户干预。

包络参数设置:

) 均总体信息 () ())) ()))))))))))))	包約	前柳	计 関型[自动包	络设计		
屈曲分析	Ē	ショ	世界	。 収框架和	和框架−抗	震墙模型	→ 日本 「日本 1000000000000000000000000000000000000
【月我间志】 基本参数 指定风荷载	ŧ	就中核	框架	计算时	力 墙弹模折	减系数	0.2
边震信息 地震信息 自定义影响系数曲线]与;	其他	模型进	进行包络 设	tił	增行 编辑 删行
地震作用放大系数 性能设计	х	y	z	Ang	正截面	斜截面	模型路径
计信息	0	0	0	0	0	1	F:\技术工作\培训文档\隔震\44971-11隔震模型-下部结构-大震

隔震支座选用剪切变形 100%时的有效刚度和有效阻尼。

在前处理中指定需要包络的构件。当下部结构有多层时,一般情况下,对于隔震层 下一层与隔震支墩直接相连的竖向构件(柱)和与此柱相连的框架梁需要进行指定包络, 对于次要构件比如一般梁、悬挑梁都可不进行包络,直接取中震弹性结果。对于不与支 墩直接相连的楼层一般只指定相应的柱取包络即可。

进行生成数据及计算,得到最终的下部结构设计结果。

(三)下部结构设计过程—非隔震模型

下面介绍的方法不是规范明确指出的方法,如果前段(二)的计算已经足够,可以 到此为止,这里是根据上部结构的设计思路和规范对隔震层以下结构的条文要求推导而 来的,一部分设计院采用此种方式设计,用户可根据自己的判断是否使用。

软件实现流程:

1、将非隔震模型复制两份;

2、一个非隔震模型进行**大震弹性**的反应谱法计算,考虑水平向减震系数 β_{*},得到 配筋结果; 3、将另一个非隔震模型进行中震弹性下的反应谱法计算,考虑水平向减震系数 β₊, 并和 2 进行包络设计,取 2 的斜截面验算配筋,取 3 的正截面验算配筋。由此得到下部 结构构件的配筋设计结果。

A	17842
名称	修改
퉬 44971-11非隔震模型 -基础	201
퉬 44971-11非隔震模型-上部结构 -小震设计	201
🍌 44971-11非隔震模型-上部结构 -小震设计 - 副	本 201
14071-11非隔雲模型-上部结构-中震	201
44971-11非隔震模型-下部结构-大震	201
🍌 44971-11非隔震模型-下部结构-中震	201
🌙 44971-11隔震模型 - 隔震层-大震	201
퉬 44971-11隔震模型 -基础	201
🎍 44971-11隔震模型-上部结构-中震	201
🍌 44971-11隔震模型-下部结构-大震	201
🍌 44971-11隔震模型-下部结构-中震	201
🎍 新建文件夹	201

(1) 非隔震模型大震弹性的反应谱法计算,考虑β_{*}

算控制信息	设计地震分组: 〇一 (●二 OE	结构阻尼比(%)			5
控制信息 刚度系数	□按新区划图计算					0
二阶效应	设防烈度	8 (0.3g) 🗸	●技材料区分	-	刊 199.67 1	-
万竹水斛奓剑 荷载信息	场地类别	II \sim	空的海嶺工	5	混凝土	6
基本参数 指宁风荷载	特征周期	0.45	- 偶然偏心 □ ★ 走偶然偏い、 ▼	0.05	v	0.05
震信息	周期折减系数	1	□ 与尾向公開心 ▲ 個狀伯 \: 让智士注:	0.00	1	0.05
地震信息 白空ツ駅响系粉曲线	特征值分析参数		●等效扭矩法(传	统法)		
也震作用放大系数	分析类型	WYD-RITZ 🗸	○瑞利─里兹投影	反射谱法	(新算法)	
性能设计 性能包络设计	● 用户定义振型数	3	□老虎双向地震作用			
隔震減震	○程序自动确定振型数				的表作田	
け信息 荷载信息	质里参与系数之和(%)	90	日401年月取个利地展 创六控制力均供专向各	にしてい。 (0_00)	URETFH	
件设计信息	最多振型数量	150	科文机则力构件方向用	医(0-90)	ます	
构件设计信息 钢构件设计信息	「 保 し い な し な し 、 に 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、	抗震等级 符号	活荷载重力荷载代表值	组合杀数		,
络设计	於	_4B ~	地震影响系数最大值		1.2	2
Ħ肩忌 材料参数	前力持续委等级	412	用于12层以下规则砼框 验算的地震影响系数最	深结构演 大值	吻馬 1.2	2
钢筋强度 下 安信 自	9970地址表生物	-3% ~	竖向地震作用系数底线	值	0.1	15
下至信忌 载组合	的性笨机震等级	—级 ~	□ 地震计算时不考虑地	下室的绚	吉构质量	
组合系数 组合某		低—				
温古表 自定 <u>义</u> 工况组合		品区前力槽给雪笔				
定加固	◎ 级自动提高一级					
EN JA	□ □ 地下一层以下抗震构造打 □ 层降低及抗震措施四级	音施的抗震等级逐				
	同局部模型反应谱法计算	经向地震时				
	一考虑水平质里					
	はまさせいフォルトはてらん	54+45 FE FB .				
	一 地辰 町 昇 凹 小 ち 迄 地 ト 至 町 勾 洗 此 参 数 后, 软 件 在 计 算 折	35619项里: 她需作用时,将不考	虑地下室各层的质量。			
		and the second second second				

生成数据计算,得到结果

说明:建议此处还是用中大震的性能设计来完成。

(2) 非隔震模型中震弹性反应谱法计算,考虑 β "

包络设置

结构总体信息 计算控制信息 控制信息 屈荷载信息 风基载信息 指定风荷载	包纬 当 1 打	設 前 都 し 造 自 数 朝	计过程 建丁酮 化二乙酸 化二乙酸 化二乙酸 化二乙酸 化二乙酸 化二乙酸 化二乙酸 化二乙酸	自动包 ! !框架和 计算时	络设计 阳框架-抗 地墙弹模折	震墙模型 [。] 减系数	→ 日本 1 日本
地震信息 地震信息 自定义影响系数曲线]与;	其他	模型进	进行包络设	iit	增行 编辑 删行
地震作用放大系数 性能设计	x	y	z	Ang	正截面	斜截面	模型路径
设计信息	0	0	0	0	0	1	₽:\技术工作\培训文档\隔震\44971-11非隔震模型-下部结构-大

在前处理中指定需要包络的构件。当下部结构有多层时,一般情况下,对于隔震层

下一层与隔震支墩直接相连的竖向构件(柱)和与此柱相连的框架梁需要进行指定包络, 对于次要构件比如一般梁、悬挑梁都可不进行包络,直接取中震弹性结果。对于不与支 墩直接相连的楼层一般只指定相应的柱取包络即可。

生成数据+全部计算,得到最终的下部结构配筋

(四)大震弹塑性计算分析

可以对隔震模型(整体模型)采用大震弹塑性动力分析软件 YJK-EP 计算,取其隔震 层以下部分的结果,判断隔震层支墩、支柱及相连构件,隔震层以下的结构(包括地下 室和隔震塔楼下的底盘)中直接支承隔震层以上结构的相关构件,是否满足嵌固的刚度 比和隔震后设防地震的抗震承载力要求、按罕遇地震抗剪承载力验算要求,以及隔震层 以下地面以上的结构在罕遇地震下的层间位移角限值要求等。

大震弹塑性分析的目的:

为达到罕遇地震作用下防倒塌的抗震设计目标,采用以抗震性能为基准的设计思想 和位移为基准的抗震设计方法。基于性能化的抗震设计方法是使抗震设计从宏观定性的 目标向具体量化的多重目标过渡,强调实施性能目标的深入分析和论证,具体来说就是 通过复杂的非线性分析软件对结构进行分析,通过对结构构件进行充分的研究以及对结 构的整体性能的研究,得到结构系统在地震下的反应,以证明结构可以达到预定的性能 目标。因此,达到防倒塌设计目标的依据是限制结构的最大弹塑性变形在规定的限值以 内。根据《建筑抗震设计规范》,取弹塑性最大层间位移角限值为 1/50。通过弹塑性时 程分析得出隔震垫的极限位移等为设计提供参数依据。

流程:

(1) 用算隔震层的隔震模型进行反应谱计算,此为中间过程。

(2) 进行大震弹塑性计算,可采用算上部结构的地震波。

1	00	e <mark>x</mark>					x64 -	盈建和	斗建筑结构	计算模	块	IJK-A	1.8.1.	0] - [I	F:\技术I	作\培训	文档\隔震	\44971-11	震模
	模型	苛载输入	上部建	胸计算	砌体设	助 1	基础设计	h	可图设计	钢	结构图	2	力弹塑	生分析	静力	单塑性分析	í 转	ABAQUS弹道	目性分析
		F		S	C y		R	\$	ethere.	1 Jan	V.	Ň	M	4	<pre>pi</pre>			<pre>b</pre>	
用户波导入	也震波 选择	弹塑性 计算参数	生成数据	模型显示	特殊构件	数检报告	计算	振型 显示	节点时程	楼层时 程曲线	楼层最 大响应	构件提伤因子	构件最大内力	构件内 力滞回	性能水准	主要报告	送审报告	反应谱 规范谱对比	
	参数设	≝		模型	简化		计算					后处	理结果看	锏				统计意义相符	3

第四章 隔震结构分部设计法软件实现流程

文地演 Y向t	≋波 地震波 ☑ X向地震波	震波	地震波	信息 分析时输入地震加速度的最大值(cm/s2): 400
序号	- 地震波名称	1	积分的	约间增里(\$): J.02
1	Chi-Chi, Taiwan-02_NO_2182,Tg(0.41)		开始的	时间(s): 0 ~ 结束时间(s): 57
2	ArtWave-RH4TG040,Tg(0.40)		水平地	地震主方向作用方向: 🧕 X向 💿 Y向
3	Chalfant Valley-04_NO_563,Tg(0.38)		地震	
			X向系	数: 1 Y向系数: 0.85 Z向系数: 0.65
			方向	YJK地震波
向地	震波		x	Chi-Chi, Taiwan-02_NO_2182,Tg(0.41)
🕅 Z	向地震波 载入地震波文件格式样例	显示信息	Y	Chi-Chi, Taiwan-02_NO_2182,Tg(0.41)
文件	路径:	加载	z	
		Z23114825		

将得出的层间位移角和《抗规》表 12.2.9 比较即可。

11.111、秋丁示赤、杨成天厅正社、1111、11.11和成货主 11股 11版 计主任(11.	• • <i>د</i>		- u- ^
第一 静力弾塑性分析 转ABAQUS弹塑性分析 二級國形編輯 ●	/ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	捜上传	
		1 🖓 💭	
件内 性能水准 主要报告 送审报告 反应谱 把应送进对比			
	d	第1日然层	•
(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)			^ x
	显示内谷 配筋面积 	💿 剪压比	•
	- 显示构件 ▼梁 ▼柱 ▼ 増雑	 ✓ 支撑 ○ 横板 	
	地震波 ② 包络値 ③ 平均値		
	◎ 单波值 Borah Peak, ID-01_NO	439,Tg(0.45)400	Ш

也可以在弹塑性模块中指定某些构件的不屈服项,进行大震弹塑性计算并给出大震

配筋。

七、基础设计-非隔震模型

《抗规》第 12.2.9 条第 3 款,隔震建筑地基基础的抗震验算和地基处理仍应按本地 区抗震设防烈度进行,…

彻底不考虑隔震效果**,**用非隔震模型小震反应谱法计算,然后传到基础模块进行基 础设计。

软件实现流程:

将非隔震模型按本地区设防烈度(不降低设防烈度的)进行小震计算; 到基础模块中进行基础建模及计算设计。

-	
1	44971-11非隔震模型 -基础
J	44971-11非隔震模型-上部结构 -小震设计
1	44971-11非隔震模型-上部结构 -小震设计 - 副本
0	44971-11非隔震模型-上部结构-中震
1	44971-11隔震模型 - 隔震层-大震
1	44971-11隔震模型 -基础

计算控制信息 设计地震分组: ○一 ●二 ○三 结构阻尼比(%) 控制信息 技新区划图计算 ● 全楼统一 5 四放应 分析求解参数 场地类别 面 2 石荷载信息 场地类别 面 ○ 全楼统一 5 建本参数 场地类别 面 ○ 2 地震信息 周期折减系型、P各低的7,2 本北 6 ○ 2 地震信息 周期折减系型、P各低的7,7 本北 6 ○ 3 0.05 Y 0.05 <td< th=""></td<>
初件设计信息 □ 按主振型确定地震内力符号 如务设计 □ 按主振型确定地震内力符号 公务设计 ○ 按主振型确定地震内力符号 公都设计 ○ 拉主振型确定地震内力符号 小料信息 ○ 拉主振型确定地震内力符号 材料答数 剪力墙抗震等级 □ 级 即方墙抗震等级 □ 级 ○ PY室信息 印度低二级 ○ 1 括高台 ····································

进行生成数据+全部计算。

第四章 隔震结构分部设计法软件实现流程

进入基础设计模块,进行基础设置及设计计算。此处略

		するこ	9 🛃				x	64 - 盔	建科基	础设计	软件一	-чл
	模型荷	成输入	上部	结构计	算砚	体设计	1	記建模		翻计算	1 及结果	输出
重新	地质资料	荷载	王 参数	L.	自动布置	凸楣	山延伸	んしん	る編辑	选当	HT LI	自动相
读取		-	设置	布置	-		到板	-	-	前桩	布置	-
读取	地质资料	荷载	参数	3	独基	地建	县梁	筏	板		桩基承	治

八、隔震支座参数属性及设置方式详解

1、隔震层的建模方法

目前对隔震层主要有两种建模方法。

1) 隔震层为单独的一层

隔震层为单独的一层,由梁和柱组成,上层如为剪力墙则梁成为转换梁。隔震支座 设在柱下,可通过计算前处理的单点约束菜单设置。

2) 隔震层由单独的 2 层组成

隔震层由 2 层组成,下面层布置的都是一根根独立的柱,模仿隔震支座的支墩。上 面的层由梁和柱组成,柱很短,隔震支座设在该层柱下,可通过计算前处理的单点约束 菜单设置。

2、单点约束的应用

当隔震支座所处位置的节点连接关系较为简单,没有横向构件与之相连时,用户可 以直接采用单点约束来很方便的布置隔震支座,如下图所示结构。

在该结构基底布置隔震支座时,依次点击"上部结构计算—前处理及计算—节点属性 —单点约束—柱底节点",并在右上角选择楼层第一自然层对应的标准层。在弹出的对话 框中。

选择隔震支座,并定义好相应的参数,将需要布置隔震支座的位置用鼠标圈起来即 可。布置好后,在柱底节点的相应位置会显示出隔震支座的参数。

3、隔震参数输入及各参数的意义

隔震支座的参数对话框如下图所示,其中1轴为轴向,2轴和3轴为水平方向。

单点约束 1、2、3 轴为整体坐标系 Z、Y、-X 方向。

线性部分的参数(有效刚度和有效阻尼)在3个坐标轴上意义一致,有效刚度的意 义是将非线性构件等效成一根线性构件后的刚度,此刚度对结构周期、反应谱计算和快 速非线性(FNA)时程分析结果有较大影响。有效阻尼只影响附加阻尼比,从而影响反 应谱计算结果。由于隔震模型的反应谱结果一般不被关注,所以有效阻尼可以填 0。若想 计算有效阻尼,也可参考 YJK 帮助文档中的公式。

对于非线性参数,轴向和水平向意义不一致,下面分别说明。

(1) 轴向(U1) 非线性参数

刚度:隔震支座轴向受压刚度。

抗拉刚度:隔震支座轴向受拉刚度。

截面积:隔震支座的横截面积,弹性时程模块会使用该参数计算隔震支座的拉压应

力,若填0,则对应的隔震支座拉压应力均为0.

(2) 水平方向(U2、U3) 非线性参数

刚度:隔震支座水平方向屈服前刚度

屈服力:隔震支座的屈服力。

屈服后刚度比:隔震支座屈服后的刚度与屈服前刚度的比值。

	有效刚度 (keN/m)	有效阻尼 (kdN.s/m)	非线性	刚度 (keN/m)	抗拉刚度 (kN/m)	截面积 (m2)	
V1 🗸	2.445e6	0	V	2. 445e6	2.4e5	0.3	
					屈服力LN	屈服后刚	度比
7 V2	1861	0	V	9290	90.2	0.77	
7 V3	1861	0		9290	90.2	0.77	
] R1	0	0					
R2	0	0					
R3	0	0					

4、隔震参数输入举例及注意事项

隔震支座生产厂家给出的隔震支座参数表如图所示。
第四章 隔震结构分部设计法软件实现流程

型号	支座尺寸 边长或直 径	支座及铅 芯高度 (H)	竖向承 载力	设计位移 (100%)	铅芯屈 服剪力	安装高 度(Ha)	连接板尺 寸(B)	连接板尺 寸 (A)	水平等效 刚度	屈后刚 度(K ₂)	竖向压缩刚 度(Kv)
(mm)	mm	mm	KN	mm	KN	mm	mm	mm	KN/mm	KN/mm	KN/mm
	600	175		85	99	225	640	640	2.89	1.72	3581
	600	201		104	84	251	640	860	2.64	1.83	3627
	600	188		96	84	238	640	860	2.86	1.98	3838
	600	175	2000	85	84	225	640	860	3.22	2.23	4562
CTKD000 × 000	600	201	3600	104	99	251	640	860	2.78	1.82	3627
	600	188		96	99	238	640	860	3.01	1.97	3838
	600	175		85	99	225	640	860	3. 38	2.22	4562
	650	208		107	92	258	690	690	2.48	1.62	3051
	650	195		100	92	245	690	690	2.65	1.73	3099
CI PRCEO	650	182	2017	90	92	232	690	690	2.94	1.93	3593
CLRD630	650	208	3317	107	116	258	690	690	2.69	1.61	3051
	型 号 (mm) CLRB600×600 <i>CLRB650</i>	型号 芝座尺寸 边长或直 径 (mm) 600 <	支座尺寸 边长或直 花高度 (H) 支座及铅 芯高度 (H) (mm) 加加 175 600 175 600 188 600 175 600 175 600 188 600 175 600 175 600 175 600 175 600 175 600 101 600 105 600 175 600 101 600 105 600 175 600 101 600 105 600 105 650 105 650 182 650 105	支座尺寸 边长或直 径 支座及铅 芯高度 (H) 登向承 载力 (mm) mm KN (mm) 600 175 600 201 600 188 600 175 600 188 600 175 600 175 650 188 650 182 650 182 317	<table-cell> 型 당 支座尺寸 边と成直 (100) 支座及桁 芯高座 (100) 空向水 軟力 设计位移 (100) (mm) mm mm KN mm (mm) mm mm KN mm 600 175 85 85 600 201 96 85 600 175 104 96 600 175 96 104 600 201 96 104 600 175 104 104 600 175 104 104 600 201 104 104 600 175 101 104 600 105 107 107 650 105 311 100 650 188 107 107</table-cell>	型 子 支座尺寸 込长或直 径 支座及桁 芯高度 (H) 影向, 軟力 设计位移 服剪力 器芯周 服剪力 (mm) mm mm KN Mm KN (mm) mm mm KN Mm KN (mm) 600 175 855 99 600 201	型 ウ 文座尺寸 次と成直 (H) 文座及前 次高度 (H) ショク 教力 設计位移 服助力 船芯晶 度(Ha) 安装高 限助力 (mm) mm (H) Mm KN mm mm (mm) mm f KN mm KN mm 600 175 85 99 225 600 201 104 84 251 600 175 860 84 238 600 175 860 99 251 600 175 860 99 251 600 175 860 99 251 600 175 850 99 225 600 175 865 99 235 600 175 855 99 225 650 208 107 92 258 650 182 91 92 232 650 208 100 92 232 650 <td>型 引 支座尺寸 边长或直 径 支座及桁 芯高度 (H) 影向水 軟力 设计位移 (100%) 船芯馬 服剪力 安装高 度(Ha) 達接板尺 寸 (B) (mm) mm Mm KN mm KN mm mm (mm) mm mm KN mm KN mm mm 600 175 85 99 225 640 600 201 96 84 238 640 600 175 96 84 238 640 600 175 96 84 238 640 600 175 96 84 238 640 600 175 96 84 238 640 600 175 96 97 238 640 600 175 85 99 225 640 600 175 85 99 228 640 600 175 101 92 238 640</td> <td>型 支速尺寸 次(m) 支速及铅 芯高度 (H) 空雨及 軟力 设计位移 服剪力 留芯局 服剪力 支装板 児(h) 達接板尺 寸(h) 達接板尺 寸(h) (mm) mm mm KN mm KN mm mm mm (mm) mm mm KN mm KN mm mm mm 600 175 85 99 225 640 640 600 201 - 404 84 251 640 860 600 175 - 865 84 238 640 860 600 175 - 865 84 225 640 860 600 175 - 865 99 251 640 860 600 175 - 865 99 238 640 860 600 175 - 855 99 225 640 860 600 175 - 865 99</td> <td>型 ヴ ヴ $\delta \eta \phi$ $\delta \eta \phi$</td> <td>型 労 支座尺寸 次(m) 支座及前 次高度 (h) 整向承 数力 设计位称 (100%) 報告期 期功 定 報力 连接板尺 寸 (B) 水平等效 寸 (B) 漏后例 別度 漏后例 度 (K_2) (mm) mm mm mm KN mm KN mm mm KN/mm KN/mm (mm) mm mm Mm KN mm mm mm KN/mm KN/mm 600 175 85 99 225 640 640 2.89 1.72 600 201 104 84 251 640 860 2.64 1.83 600 175 865 84 238 640 860 2.89 1.93 600 175 860 84 238 640 860 2.81 1.93 600 175 865 99 251 640 860 3.01 1.97 600 175 865 99 238 640 860 3.01 1.97</td>	型 引 支座尺寸 边长或直 径 支座及桁 芯高度 (H) 影向水 軟力 设计位移 (100%) 船芯馬 服剪力 安装高 度(Ha) 達接板尺 寸 (B) (mm) mm Mm KN mm KN mm mm (mm) mm mm KN mm KN mm mm 600 175 85 99 225 640 600 201 96 84 238 640 600 175 96 84 238 640 600 175 96 84 238 640 600 175 96 84 238 640 600 175 96 84 238 640 600 175 96 97 238 640 600 175 85 99 225 640 600 175 85 99 228 640 600 175 101 92 238 640	型 支速尺寸 次(m) 支速及铅 芯高度 (H) 空雨及 軟力 设计位移 服剪力 留芯局 服剪力 支装板 児(h) 達接板尺 寸(h) 達接板尺 寸(h) (mm) mm mm KN mm KN mm mm mm (mm) mm mm KN mm KN mm mm mm 600 175 85 99 225 640 640 600 201 - 404 84 251 640 860 600 175 - 865 84 238 640 860 600 175 - 865 84 225 640 860 600 175 - 865 99 251 640 860 600 175 - 865 99 238 640 860 600 175 - 855 99 225 640 860 600 175 - 865 99	型 ヴ ヴ $\delta \eta \phi$	型 労 支座尺寸 次(m) 支座及前 次高度 (h) 整向承 数力 设计位称 (100%) 報告期 期功 定 報力 连接板尺 寸 (B) 水平等效 寸 (B) 漏后例 別度 漏后例 度 (K_2) (mm) mm mm mm KN mm KN mm mm KN/mm KN/mm (mm) mm mm Mm KN mm mm mm KN/mm KN/mm 600 175 85 99 225 640 640 2.89 1.72 600 201 104 84 251 640 860 2.64 1.83 600 175 865 84 238 640 860 2.89 1.93 600 175 860 84 238 640 860 2.81 1.93 600 175 865 99 251 640 860 3.01 1.97 600 175 865 99 238 640 860 3.01 1.97

以图中红框所在行为例,其截面为圆形,由表中给的数据可知以下隔震支座参数:

- (1) 直径: 650mm
- (2) 竖向压缩刚度: 3051kN/mm
- (3) 水平等效刚度: 2.48kN/mm
- (4) 屈服后刚度: 1.62kN/mm
- (5) 屈服力: 92kN

按照目前大多数隔震工程的经验,隔震支座拉刚度为压刚度的 1/6~1/10,屈服后刚 度和屈服前刚度比一般取 1/13 至 1/15。若对这两个参数不确定,也可征求生产厂家的意 见。根据以上参数,可以将其换算为 YJK 隔震支座单元的输入参数(注意软件中的量纲 为 kN, m):

- (1) 隔震支座面积: 3.14*0.65*0.65/4=0.332m²
- (2) U1 方向有效刚度一般与压刚度设为一致: 3051000kN/m
- (3) U1方向非线性参数的压刚度: 3051000kN/m
- (4) U1方向非线性参数的拉刚度: 305100kN/m
- (5) U2 及 U3 方向有效刚度: 2480kN/m
- (6) U2及U3方向屈服后刚度比: 1/13=0.0769
- (7) U2及U3方向屈服力: 92kN

(8) U2 及 U3 方向非线性刚度=屈服后刚度/屈服后刚度比

=1620/0.0769=21060kN/m

(9) 采用减震系数法时,有效阻尼可以填0。

最终设定好的参数对话框为:

隔震さ	z座	•		iź	趣定义 [无相关定	Х.	•
	有效刚度 (ktN/m)	有效阻尼 (kdN.s/m)	非线性	刚度 (kdN/m)	抗拉刚度 (ktN/m)	截面积 (m2)		
V1 🔽	3051000	0	V	3051000	305100	0.332		
					屈服力ĿN	屈服后刚	度比	
V V2	2480	0		21060	92	0.769		
V3	2480	0	V	21060	92	0.769		
R1	0	0]					
R 2	0	0						
R 3	0	0]					

5、在其他软件中等效拉压刚度不一致的方法

由于在 MIDAS、ETABS 和 SAP2000 等软件中,隔震支座单元轴向并不支持拉压刚 度不一致,故需要等效,此时需要使用 GAP 单元。

GAP 单元是一种非线性力学单元的名称,也称间隙单元或缝单元。如图所示,其力 学行为描述如下:

上式中 d 为 GAP 单元两端相对位移,且当受拉时为正值,受压时为负值; open 为用 户初始指定的间隙(必须是正值); k 为用户指定的 GAP 单元的刚度。从上式中可以看 出,该单元只能在初始间隙闭合后才能受压,且不能受拉。若将 open 值设为 0,则 GAP 单元完全等效于仅受压单元。

利用 GAP 单元的特性,可采用隔震支座单元并联 GAP 单元的模式来等效隔震支座 轴向拉压刚度不一致的情形,例如当隔震支座轴向压刚度为 3051000 kN/m,拉刚度为 305100 kN/m 时。需要将隔震支座单元的轴向刚度设为 305100 kN/m; GAP 单元的间隙值

(open) 设为 0, 刚度设为 3051000 kN/m-305100 kN/m=2745900 kN/m。此时,两个单元 并联后的刚度表现如下:

受拉刚度 = 305100kN/m(隔震支座单元)+0 kN/m(GAP 单元)= 305100 kN/m

受压刚度 = 305100kN/m(隔震支座单元)+2745900kN/m(GAP 单元)=3051000 kN/m

此时,与在 YJK 中隔震支座 U1 方向开启非线性后,压刚度设为 3051000kN/m,拉 刚度设为 305100 kN/m 等效。

但应注意,在设置有效刚度参数时,在 ETABS 或 MIDAS 中,隔震支座单元的有效 刚度与 GAP 单元的有效刚度之和应等于 YJK 中隔震支座单元的有效刚度。

注:以上等效方式在使用最新版本盈建科软件的 YJK 到 ETABS 接口时,接口程序 会自动按照上述要求,将 YJK 中拉压刚度不一致的隔震支座等效为隔震支座单元和 GAP 单元并联的模式写入到生成的 ETABS 模型中。

九、时程分析法计算计算隔震结构技术原理

按照《抗规》12.2.2 中关于隔震结构计算的规定,"一般情况下,宜采用时程分析 方法进行计算"。

隔震计算属于非线性分析计算。

1、地震波选取

可在非隔震结构上选取地震波;

1) 基本要求: 7条波取平均,3条波取包络; 天然波数量不少于波总数的 2/3; 弹性

时程分析时每条波计算所得结构底部剪力不应小于振型分解反应谱法计算的 65%;多条 波时平均值不应小于 80%;有效持时为结构基本周期的 5~10 倍;确定减震系数时按中 震计算;需考虑近场影响时地震波输入应考虑近场影响系数(确定减震系数时与之对比 的非隔震模型亦应按中震并乘以近场影响系数计算);

2)地震波在主要周期(一般可取前3个周期)点上的相似性要求:应同时满足隔震和非隔震在主要周期点上的相似性要求;确有困难时对非隔震结构主要周期点上的相似 性要求可适当放宽。

计算示例如下:

1)用非隔震模型选地震波,若选3条取包络值,7条取平均值,保证两模型在主要 周期点上符合相似性要求。

可以先按稍多条数来选择地震波,因为是按照非隔震模型选择地震波,还要保证 隔震模型与非隔震模型在主要周期点上符合相似性要求,所以需要人工逐条比对,挑 选出在主要周期点上相差最少的一组来进行中震弹性时程分析。

第四章 隔震结构分部设计法软件实现流程

读入上次计算参数设置与统计结果	保存参数设置与计算统计结果	地震波组合筛选限制条件
法取备选地震波 ◎ YIK地震波库 0.65 ▼	◎ 用户自定义波	 单尔地震波星馬努力满定规范要求 地震波组合平均基底剪力满足规范要求 平台平均值与第一周期邻域平均值筛选
AUMI BJ X-CASE ATARa 20_X10 1945,17(0,66) 間 Bea-11,V0_915,17(0,66) 間 Bea-11,V0_931,7(0,66) 間 Bea-11,V0_931,7(0,66) Bea-10,V0_933,17(0,69) Bea-10,V0_933,17(0,69) Bea-10,V0_942,17(0,69) Chaifant Valley 20,V0_942,17(0,69) Chaifant Valley 20,V0_948,17(0,69) Chaifant Valley 20,V0_948,17(0,69) CH-Ch, Tawan, N0_1197,17(0,65) CH-Ch, Tawan, N	**法律・ #注注:	DT1 0.2 DT2 0.5 Tel 0.35 考虑各地震波组合在第 1-3 阶周期的平均反应诸值 (周期点支持连续和回器输入。如1-5,8,10) 查看计算结果文本 施造地震波组合 查看计算结果文本 地震波组合隔选计算结果 共确选出符合要求性震波组合 第 1 物种管波组合 100 第 1 物种管波组合 100 第 1 物种管波组合 100 第 1 物种管波组合 100 第 2 物种管波组合 100 第 4 种种管波组合 100 第 4 种种管波组合 100
ArtWave-RH1TG065,Tg(0.65) ArtWave-RH2TG065,Tg(0.65) ArtWave-RH3TG065,Tg(0.65) ArtWave-RH3TG065,Tg(0.65)	ArtWave-RHTIGO65,Tg(0.65) ArtWave-RHTIGO65,Tg(0.65) ArtWave-RHTIGO65,Tg(0.65) ArtWave-RHTIGO65,Tg(0.65) ArtWave-RHTIGO65,Tg(0.65) 全観=>	送64地震波组合 这径地震波组合 青空计算结果 Kobe, Japan I/O, 1177 (50.69) A Hettor Mine, No. 7380, 17(0, 63) A College, Japan I/O, 1120, 17(0, 69) A College, Japan I/O, 1120, 17(0, 69) A College, Japan I/O, 1120, 17(0, 69) A College, Japan I/O, 1220, 17(0, 69) B College, Japan I/O, 1220, 17(0, 69) B
地震波组合参数设置 备选地震波总数 97 人工波数	2 - 天然波数 5 -	Coalinga-03_NO_392,Tg(0.64)

	添加地震波		中物靈游	起始周期	0.01
-			Traneat	⊤ 终止周期	6
	名称				0.00
1	Hector Mine_NO_1	780, Tg (0.63)		周期步长	0.02
2	Chi-Chi, Taiwan_	NO_1220, Tg(0.69)		特征周期(s)	0.65
3	ArtWave-RH1TG065	,Tg(0.65)		参与振型数	27
				设防烈度	8 (0.3g)
				地震影响	多遇地震
积分	时长(s) 35	积分步长(s)	0.02	地震影响系数最大值	0.68
胡柳	阻尼比 (%)				300
) ś	全楼统一		5	土力问哺祖加速度(cm/s')	500
0 ±	安材料区分	钢	2	次方向峰值加速度(cm/s*)	255
		混凝土	5	🔽 只计算主方向地震效应	
		型钢混凝土	5	读取前处理地震参	黝

2) 尽量保证主要周期点上的相似性

2、快速非线性(FNA)方法

快速非线性(Fast Nonlinear Analysis,简称 FNA)方法,是一种非线性的模态叠加 方法,原理是将结构的线性部分和非线性部分隔离开,通过非线性力迭代的方式对结构 进行计算。下面对其优缺点进行简单概括。

优点:其计算速度较之非线性直接积分法要快很多,适用于计算具有有限数量的非 线性构件、仅存在局部非线性行为的结构。因而在进行减震隔震计算时,若只考虑结构 中隔震支座、阻尼器、屈曲约束支撑等构件的非线性行为,而结构其余构件均考虑为线 性构件时,该方法较为实用。

缺点:由于该方法的计算依赖于结构的模态结果,所以非线性构件的线性部分的有效刚度填写的准确与否,对计算结果将会有一定的影响。对于减震结构,由于隔震支座

的影响范围有限,使用 FNA 方法一般都可以得到较为准确的结果。但对于隔震结构而言, 由于隔震支座的加入,往往会较大的改变结构底部的力学性能,对结构的模态周期影响 很大,由其产生的非线性亦会影响结构的整体,从而不能严格满足"结构仅有局部非线 性"这一条。此时,若想用 FNA 法得到较为准确的结果,则需要将隔震支座的有效刚度 填写准确。若不能确定有效刚度,也可采用直接积分法对隔震层的层剪力进行校核。一 般而言,若 FNA 法计算的隔震层剪力偏小,则说明隔震支座的有效刚度值偏小;反之偏 大。

3、直接积分法

盈建科软件的直接积分法采用 Newmark 方法,该方法是传统的动力分析隐式方法, 下面对其优缺点进行概括。

优点:该方法对非线性动力分析非常有效,无论是局部非线性或是整体非线性, Newmark 方法均能得到准确的结果。在盈建科弹性时程模块的直接积分中,只考虑隔震 支座、阻尼器、屈曲约束支撑等特殊构件的非线性行为,计算过程中完全不依赖其线性 部分的有效刚度,只采用非线性参数进行计算,所以使用此方法计算时,不必考虑填入 的有效刚度是否准确。需要补充说明的是,直接积分法模块中也加入了计算模态周期的 功能,有效刚度会影响直接积分法模块中的振型结果,但由于直接积分法动力分析本身 与振型(模态)毫无关联,所以动力时程分析结果不会因有效刚度的改变而改变。

缺点: 该方法在每个时间步进行计算时,都需要重新组装总体刚度矩阵,重新对刚 度矩阵进行分解,因而计算速度较之快速非线性法要慢很多。

注:从 1.8.0 版本开始,直接积分法模块已经加入平衡迭代; 1.7.1 版本的直接积分 法模块未加入平衡迭代的功能。建议在使用 1.7.1 直接积分法时,计算两次,第二次缩减 一半时间步长,若两次得到结果近似,则证明结果正确,否则需要继续缩短步长再次进 行计算,直到缩减步长前后,计算结果差异可以接受为止。

179

十、非隔震结构的上部结构分析计算要点

1、对非隔震结构按照αmaxl 进行结构计算

按照当地设防烈度,对同样的、但未设置隔震支座信息的结构进行计算,采用原设 防烈度不调整的水平地震影响系数最大值αmax 填入地震计算参数的"地震影响系数最大 值"项,交互"调整后的水平向减震系数(β/ψ)"数值,完成最终结构设计计算。 这里输入的αmax 是考虑调整系数前的。

构总体信息	地震信息 > 地震信息		往地阻口比(*)			
算控制信息 控制信息	设计地震分组:○一 ●	DE OE	314900 ℃ (%) ④ 全楼统一			5
刚度系数 一阶效应	□ 按新区划图计算 设防列度	8 (0.20) ~	〇 按材料区分		钢	2
分析求解参数	杨柳光别	II v	型钢混凝土	5	混凝土	5
何戦信息 基本参数 雷信自	特征周期	0.4	- 偶然偏心 □ 麦皮偶然偏心	0.05	v	0.05
地震信息 自定义影响系数曲线 时域显式随机模拟注	周期折减系数 特征值分析参数	0.7	■ 偶然偏心计算方法: ● 等效扭拒法(传)	·····		
地震作用放大系数	分析类型	wyd-ritz \checkmark	○瑞利─里兹投影	反射谱法((新算法)	
性能设计 性能包络设计 喧歌 drag	●用户定义振型数	15	□考虑双向地震作用			
^{隋晨姚晨} 计信息 荷载信自	○程序目动确定振型数 质里参与系数之和(%)	90	自动计算最不利地震	方向的地	震作用	
件设计信息 构件设计信息	□最多振型数里	150	斜交抗侧力构件方向角 活荷载重力荷载代表值:	度(0-90) 组合玄称	0.5	il.
钢构件设计信息	□ 按主振型确定地震内力符	F号	抽雲影响を粉景士値		0, 1	6
料信息	砼框架抗震等级	二级 ~	相長影响系数載入值 用于12层以下规则砼框	架结构薄弱	端层 n o	
材料参数 钢筋品度	剪力墙抗震等级	二级 ~	验算的地震影响系数最	大值	0.1	
	钢框架抗震等级 抗震构造措施的抗震等级	二级 ~	※回地震作用系数底线 □ 地震计算时不考虑地	l] 小室的结	0.1 构质量	
组合系数 组合表 百合心下10组合	□提高一级 □降1	既一级	原设防	烈度	的	
日定入工况组合 定加固 配式	 ☑ 榧支剪力墙结构底部加强 ☑ 级自动提高一级 ☑ 地下一层以下抗震构造措 ☑ 层降低及抗震措施四级 	区剪力墙抗震等 施的抗震等级逐				
	□局部模型反应谱法计算竖 考虑水平质重	向地震时				
	活荷载重力荷载代表值组合 该参数指的是计算重力荷载代	系数 : 表值时的活荷载组	合值系数。			

2、上部结构最小楼层剪重比控制与调整

《抗震规范》12.2.5-3 条规定: "隔震层以上结构的总水平地震作用不得低于非隔 震结构在 6 度设防时的总水平地震作用,并应进行抗震验算;各楼层的水平地震剪力尚 应符合本规范第 5.2.5 条对本地区设防烈度的最小地震剪力系数的规定。"

《乌鲁木齐建筑隔震技术应用规定》2.3.2-2条规定: "各楼层水平地震剪力应符合 抗规 5.2.5条(最小剪重比)要求。当不能满足原设防烈度下最小剪重比要求时,可直接 调整楼层剪力(将不足楼层乘以相应提高系数,调至该楼层满足最小剪重比即可),但 当调整系数最大值大于 1.3 时,宜调整上部结构。"

设置好本地区设防烈度后,软件就按照输入的水平地震影响系数最大值计算并进行 最小剪重比调整。因交互的是原设防烈度的地震影响系数最大值,故满足规范要求。

针对规范规定的不小于 6 度设防时的总水平地震作用,用户可以人工比较下折减后 的水平地震影响系数最大值与 6 度设防时的数值,如果折减后的数值大,则计算结果自 然满足 6 度设防要求;如果折减后的数值小,则"调整后的水平减震系数"按 6 度设防 要求填写相应折减比例即可。

3、竖向地震

《抗震规范》12.2.1 条规定: "隔震层以上结构的水平地震作用应根据水平向减震 系数确定; 其竖向地震作用标准值,8度(0.20g)、8度(0.30g)和9度时分别不应小于隔 震层以上结构总重力荷载代表值的20%、30%和40%。"

《抗震规范》12.2.5-4 条规定: "9 度时和 8 度且水平向减震系数不大于 0.3 时,隔 震层以上的结构应进行竖向地震作用的计算。隔震层以上结构竖向地震作用标准值计算 时,各楼层可视为质点,并按本规范式(5.3.1-2)计算竖向地震作用标准值沿高度的分布。"

《乌鲁木齐建筑隔震技术应用规定》2.3.4条规定:

1.9 度时和 8 度且水平向减震系数不大于 0.3 时,应进行上部结构的竖向地震作用计算;其它情况可不进行竖向地震作用计算。

2. 竖向地震作用标准值取值(8度0.2g、8度0.3g、9度分别不小于隔震层以上结构总重力荷载代表值的20%、30%和40%)。

由于隔震层对竖向地震作用没有隔震效果,且软件是根据水平地震影响系数最大值 计算竖向地震影响系数的,因此需要对竖向地震进行调整。

目前可以直接用简化方法,即重力荷载代表值的 20%、30%、40%来考虑。也可以 用上部结构参数中的反应谱法计算。

当采用反应谱法计算时,由于采用的地震影响系数最大值可以和水平地震不同,水 平地震考虑"调整后的水平减震系数"参数,而算竖向地震时程序自动不考虑"调整后 的水平减震系数",按原设防烈度的地震影响系数来取,所以可直接采用反应谱法计算 的竖向地震标准值。

对于时程计算需要考虑三向地震,可在弹性时程的工况组合中交互输入竖方向峰值 加速度,进行时程分析,详细设计过程可参见隔震层设计章节。

182

第四章 隔震结构分部设计法软件实现流程

用户波 导入	人工波 生成	へ 目 地震波 选择		《 工况组合	父 计算	AA TAT	楼层結果	↓ 连接単元	能量曲线	↓[] 稿震支座	■ 隔震层 ▼	隔震送审报告	反应遭规范遭
目定义	地震波		前处埋		计异		后的	心埋			偏震指	得	灯比图
工况组合													×
序号	恒载	系数	活载系数	峰值加	D速度类型	主方向	可峰值加速度	E(cm/s2)	次方向峰	值加速度(cr	n/s2)	竖方向峰值加速	度(cm/s2)
1	0.0	00	0.00	PGA			400			340	-	0.00	
2	1.0	00	0.50	PGA		3	400		2	3 <mark>40</mark>		104	
注:组合	≧1是用于ì	┼算水平┧	也震作用的默	认组合。该 増加组合	组合不考点	影響の荷載 開除組合	作用,且不能	能被删除。		取消			

4、上部结构的抗震措施

《抗震规范》12.2.7-2条规定: "隔震层以上结构的抗震措施,当水平向减震系数 大于 0.40 时(设置阻尼器时为 0.38)不应降低非隔震时的有关要求;水平向减震系数不大 于 0.40 时(设置阻尼器时为 0.38),可适当降低本规范有关章节对非隔震建筑的要求,但 烈度降低不得超过 1 度,与抵抗竖向地震作用有关的抗震构造措施不应降低。此时,对 砌体结构,可按本规范附录 L 采取抗震构造措施。"

注:与抵抗竖向地震作用有关的抗震措施,对钢筋混凝土结构,指墙、柱的轴压比 规定;对砌体结构,指外墙尽端墙体的最小尺寸和圈梁的有关规定。

《乌鲁木齐建筑隔震技术应用规定》2.3.5-1 条规定: "水平向减震系数大于 0.4(设 阻尼器时 0.38)时不应降低非隔震时的有关要求;水平减震系数不大于 0.4(设阻尼器时 不大于 0.38)时,可适当降低要求,但烈度降低不得超过 1 度,且与抵抗竖向地震作用 的有关抗震构造措施不应降低(详《建筑抗震设计规范》GB50011-2010 第 12.2.7.2 条)。" 12.2.7 隔震后上部结构的抗震措施可以适当降低,一般的橡胶 支座以水平向减震系数 0.40 为界划分,并明确降低的要求不得 超过一度,对于不同的设防烈度如表 8 所示:

表 8 水平向减震系数与隔震后上部结构抗震措施所对应烈度的分档

本地区设防烈度	水平向源	或震系数
(设计基本地震加速度)	<i>β</i> ≥0.40	β<0.40
9 (0.40g)	8 (0.30g)	8 (0.20g)
8 (0.30g)	8 (0.20g)	7 (0.15g)
8 (0.20g)	7 (0.15g)	7 (0.10g)
7 (0.15g)	7 (0.10g)	7 (0.10g)
7 (0.10g)	7 (0.10g)	6 (0.05g)

关于抗震措施与抗震构造措施的抗震等级,用户可根据上表确定。

5、上部结构的抗倾覆验算

《乌鲁木齐建筑隔震技术应用规定》2.3.4条规定:

1. 当上部结构高宽比超过 4 时,非隔震结构在小震作用下基础不应出现拉应力。

当上部结构高宽比超过相关规范限值时,隔震层以上结构应进行大震下抗倾覆验算(上部结构重力荷载代表值作为抗倾覆力矩),抗倾覆力矩系数应不小于 1.2。

在进行罕遇地震下验算时,其水平地震影响系数最大值可根据减震系数β值按抗规条 文说明 12.2.5 条表 7 调整的烈度取值。用户输入大震下的水平地震影响系数最大值,计 算后查看 wmass.out 中关于抗倾覆验算内容。

建议进行罕遇地震验算时,将当前隔震设计工程的子目录复制一份,在复制的子目 录里进行隔震层以下的设计。

6、高层隔震结构

《乌鲁木齐建筑隔震技术应用规定》2.6.3-2 条 b 点规定: "高层隔震结构在罕遇地 震作用下的抗倾覆能力是保证隔震整体稳定性的重要性能要求,故当建筑物处于 9 度区, 且高宽比大于 3 时,应在隔震层设置可靠地防倾覆装置;对于高宽比大于 3 的其它高层 隔震结构,均宜设置防倾覆装置。"

《乌鲁木齐建筑隔震技术应用规定》2.6.3-2 条 c 点规定: "对于高度较高的高层隔 震结构,在进行罕遇地震分析时,宜考虑上部结构弹塑性对隔震层的地震响应影响;"

可以使用 YJK 弹塑性动力时程分析模块进行隔震结构的整体分析,得到隔震支座的 各项指标。

184

第五章 隔震结构分部设计法算例

ETABS 算例 1—云县图书馆

一、工程概况

抗震设防烈度 8 度,设计基本地震加速度峰值为 0.20g,设计地震分组第三组,II 类场地,场地特征周期 0.45s。采用框架形式,楼层数为 4 层,建筑结构高度 17.1m,宽 19.3m,高宽比 0.9。属于重点设防类,乙类建筑。

二、计算模型

该工程从 ETABS 数据转换到 YJK 而来。为防止两个软件对模型的质量分布不一致, 再将生成的 YJK 工程转换回 ETABS,这样计算结果更具可比性。本工程采用的橡胶隔震 支座,在选择其直径、个数和平面布置时,主要考虑了以下因素:

(1) 根据《抗规》12.2.3 条,同一隔震层内各个橡胶隔震支座的竖向压应力宜均匀, 竖向平均应力不应超过乙类建筑的限值 12Mpa。

(2) 在罕遇地震作用下,隔震支座不宜出现拉应力,当少数隔震支座出现拉应力时, 其拉应力不应大于 1MPa。 (3) 隔震支座的水平位移限值不应超过其有效直径的 0.55 倍和各橡胶层总厚度 3 倍二者的较小值。

本工程共使用了 28 个支座,各类型支座数量及力学性能详见表 7。隔震支座平面布 置见图。隔震结构屈重比为 0.023。

下图是在 ETABS 中定义的隔震支座的属性参数,以用的较多的 LRB600 型支座参数 为例。

1线性连接属性	数据				
属性名称	LRB600	 类型	Isolator1		
	重里			非线性连接方向属性	
质量	0.		0.	- 标识	
重里	0.	 转动惯量 2	0.	属性名称	LRB600
		转动惯里 3	0.	方向	<u> U1</u>
			P∆ 参数	类型	Isolator1
方向	非线性	属性	高级	非线性	无
🔽 U1	Г	修改/显示 U1		线性属性	
🔽 U2	•	修改/显示 U2		有效刚度	260000.
🔽 U3	•	修改/显示 U3		有效阻尼	0.
🗆 B1	Г	修改/显示 B1			
🗖 R2	Г	修改/显示 R2	确定	U1	的属性
□ R3		修改/显示.R3	取消		TT NK

第五章 隔震结构分部设计法算例

线性连接方向属性		非线性连接方向属性	
┌标识			
属性名称	LRB600	属性名称	LRB600
方向	U2	方向	U3
类型	Isolator1	类型	Isolator1
非线性	Yes	非线性	Yes
线性属性		线性属性	/
有效刚度	1620	有效刚度	1620.
有效阻尼	0.	有效阻尼	0.
剪切变形位置		剪切变形位置	/
距J端的距离	0.	距J端的距离	0.
非线性属性		非线性属性	
利度	14300.	刚度	14300.
屈服强度	60.	屈服强度	60.
屈服后刚度比	0.0769	屈服后刚度比	0.0769
U2的	属性	U	3的属性
确定		确定	

为了实现隔震支座轴向拉压刚度不一致,在 ETABS 中为每个隔震支座下都设置了 Gap 单元如下图:

Gap 是一种非线性力学单元的名称,其属性参数设置如下图,特征就是间隙参数设置为 0。由于 ETABS 中隔震支座单元并不支持轴向拉压刚度不一致,为模拟拉压刚度不一致,需要采用隔震支座并联 Gap 单元的模式,例如隔震支座轴向压刚度为 2200000 kN/m,拉刚度为 220000kN/m,利用间隙单元只能受压不能受拉的性质,将隔震支座轴向刚度设为 220000 kN/m-220000

kN/m=1980000kN/m。在YJK中,用户不必做此考虑,直接将隔震支座的拉压刚度输入 进其轴向非线性参数中即可,程序会自动考虑其拉压刚度不一致。

非线性连接属性数据	非线性连接方向属性	
属性名称 GR50	□ 标识	GR500
- 总质里与总重里	方向	U1
后母 0.	类型	Gap
	非线性	Yes
重重 10.	□ _ 线性属性	
方向属性 方向 非线性	有效刚度有效阻尼	1980000. 0.
	利度	1980000.
Gap单方	□□ [□] 元的属性参数	Jo.

下图是 ETABS 时程分析计算输入的地震波之一。

函数名称	REN1	
数文件 文件名 いな其他特种、減震隔震、云星图书馆隔震分析 服告、か1023/4/提 ウ件 / 2 M 要跳过的标题行 有行要跳过的前端字符 0 每行点数 1 ・ ・ 転換力用户定义的 夏元文件 - 激四表 - - - - - - - - - - - - -	值为: ○ 时间和函数值 ④ …的等间隔值 格式类型 ○ 自由格式 ○ 同定格式 每页的字符 算输入的地震波	0.02

时程工	况名		REN1X	
选项				
分析类型	振驾	卿尼		收/显示
Nonlinear	· 输出	- 时段数	15	01
高级	输出	时段大小	.02	:
		-次时程开始	7	•
		-7 (8311) / AB	17	
旨定荷载 ——	170 8 5	比如安装	지나바이	各度
acc dir 1 ▼ F	REN1 •	4.	 0.	用反
acc dir 1 F	REN1	4.	0.	0.
Etabs	1程计	算地震	波的比	例系数
		1.	1	
		- St	050	- X.

三、YJK 计算模型

对 YJK 模型中的隔震支座做如下设定,以 LRB500 隔震支座为例,其轴向压刚度为 2200000 kN/m,拉刚度为 220000kN/m,横截面积为 0.196m²。需要补充说明的是,此 时 YJK 的隔震支座单元相当于 ETABS 中隔震支座与 Gap 单元并联,所以其有效刚度为 ETABS 中隔震支座与对应 Gap 单元的有效刚度之和。

リ 🚄	フ 性 节点属 	性 抗震等级		1 1 1	防删除件	· 日 复制	● 多塔定义 ▼	楼层属性	利用	[] ↓ 计算长度	温度荷载	□ ↓ 注 活荷折减	→ 生成数据 及数检	计算简图	↓ 注算
	* 前附加质:	星局部坐椅	、 (((() () () () () () () ()		•‡ • يۇن تە	ノ 列点约束	设置支座	支座位移	✓ 删除局 ✓ 删除约 ✓ 删除约 ✓ 删除约	局部系 长度 内束 立移	温度荷载	活荷折减	生成	数据	计算
					¥	闭									
								1.5							
隔震支	逐座 有效刚度	▼	非线性	i 刚度	地取定义 屈服力W	[连接属 1、屈服后	性1 ▼]]利度比			S (170 Back 1940) Back In Callon (176) 1914 (In Back 196) 1750 (1914 (NYA 1 12 SMI ZA INI 2 SIII ZY DAN 1 SIII ZY DAN 1 SIII ZY DAN	LINCE IS STOLE JAS STATE DE LITT ENCOSEL ITT ENCOSEL ITT
■ 「「「「「「「」」(「」)」(「」)」(「」)」(「」)」(「」)」(「」)」	速座 有效刚度 (kJK/m) 2200000	▼ 有效阻尼 OctX.s/m)	非线性	说 刚度 (kW/m) 1 :200000	地取定义 屈服力1a 1:抗拉刚	连接属 1 屈服后 回1 葡 0.196	性1 ▼ 利度比 面和m2			E DYO BIOL 24401 BINZ IN CLIEGO DIA MINA O IN CLUEGO DIA MINA O IN CLUEGO DIA MINA O		r			LING BODDI PAT
隔震支 ▼ V1 ▼ V2	在 有效刚度 Octif/m) 2200000 1200	▼ 有效阻尼 OckW.s/m) O	非线性	说 (hN/m) 1 2200000 13000	地取定义 屈服力は 1:結邦副 220000 40	连接属 T 屈服后 即1 新 0.196 0.077	性1			5 (17) (ad. 547) (at 1 (20) (24) (25) 1 (20) (25) (25) 1 (20) (25) 1 (20) (25) 1 (25)		Γ			LIGHT C 2000 PAT Die Oblin Die Oblin Die Oblin Die Oblin
隔震支 ▼ V1 ▼ V2 ▼ V2	存 有效列度 (kN/m) 2200000 1200 1200	▼ 有效阻尼 (ktW. s/m) 0 0	非线性 ▼ ▼	说 印度 (kN/m) 1 2000000 13000	基取定义 屈服力は 11.話拉励 220000 40 40	连接属 T 屈服后 0.196 0.077 0.077	性1 ▼ 利度比 新2m2			S (PO Bott 240) Bott A Lutto from Triato A Lutto Frant Triato	F **	Г	4		LINE COUNTRAL DIA DELAN DIA DELAN
隔震支 ♥ V1 ♥ V2 ♥ V3 ■ R1	使 有效利度 (kN/m) 2200000 1200 1200	▼ 有效阻尼 (kt).s/m) 0 0 0	非线性 マ マ マ	说 (kN/m) 1 2000000 13000 13000	基取定义 屈服力は 220000 40 40	连接属 T 屈服后 0.196 0.077 0.077	性1 • 詞度比 奇印m2			6 (17) Incl. School (no. 17) A Lingo (24) Maa A Lubo (24) Maa		Г			UNE COURSE AND DIS COLOR DIS COLOR
「隔震支」	使 有效列度 QeN/m) 2200000 1200 1200 0 0	有效阻尼 (ckl. s/m) 0 0 0	非线性 マ マ マ	〕 R利度 R4Vm 1 200000 13000 13000	基取定义 屈服力は 220000 40 40	连接属 属服后 0.196 0.077 0.077	性1 , 利度比 新知m2			S (15) Bold 3-440 Bold In Lutter C.44 (1144) A Lutter C.44 (1144		Г — — — — — — — — — — — — — — — — — — —			

下图是 ETABS 的 LRB500 型隔震支座转到 YJK 单点约束下的隔震参数。

YJK 用户应核对相关的地震参数,保证与 ETABS 中的一致。

四、隔震结构模态周期计算结果对比

YJK 周期计算结果:

seseseses	********** 居 *********	*************************************	*************************************	***************
考虑扭转	時耦联时的:	振动周期(秒	›)、X,Y 方向的平动系数	敗、扭转系数
振型号	周期	转角	平动系数(X+Y)	扭转系数(Z)
1	2.5897	179.27	1.00(1.00+0.00)	0.00
2	2.5796	89.27	0.98(0.00+0.98)	0.02
3	2.4639	89.46	0.02(0.00+0.02)	0.98
4	0.6716	82.70	1.00(0.00+1.00)	0.00
5	0.6007	24.98	1.00(0.61+0.39)	0.00
6	0.5481	175.74	0.99(0.98+0.01)	0.01
7	0.5300	83.13	0.87(0.01+0.85)	0.13
8	0.5027	102.35	0.18(0.01+0.17)	0.82
9	0.4378	44.37	1.00(0.22+0.78)	0.00
10	0.4012	152.76	0.98(0.36+0.62)	0.02
11	0.3954	66.45	1.00(0.32+0.68)	0.00
12	0.3460	90.18	1.00(0.00+0.99)	0.00
13	0.3427	177.57	1.00(0.99+0.01)	0.00
14	0.3222	75.93	0.99(0.14+0.86)	0.01
15	0.2916	144.13	0.75(0.43+0.32)	0.25

ETABS 周期计算结果:

第五章 隔震结构分部设计法算例

				Modal F	Participating Mass	Ratios		
Mode	Period	UX	UY	UZ	SumUX	SumUY	SumUZ	RX
1	2.589721	99.6352	0.0163	0.0000	99.6352	0.0163	0.0000	0.012
2	2.579642	0.0161	97.9073	0.0000	99.6513	97.9236	0.0000	73.53
3	2.463874	0.0002	1.7926	0.0000	99.6515	99.7161	0.0000	1.336
4	0.671573	0.0000	0.0008	0.0000	99.6515	99.7169	0.0000	0.001
5	0.600690	0.0005	0.0001	0.0000	99.6520	99.7170	0.0000	0.014
6	0.548134	0.3192	0.0016	0.0000	99.9712	99.7186	0.0000	0.129
7	0.530012	0.0035	0.2285	0.0000	99.9747	99.9471	0.0000	20.369
8	0.502712	0.0013	0.0314	0.0000	99.9760	99.9785	0.0000	3.373
9	0.437826	0.0000	0.0002	0.0000	99.9760	99.9787	0.0000	0.001
10	0.401245	0.0001	0.0003	0.0000	99.9761	99.9790	0.0000	0.013
11	0.395415	0.0000	0.0004	0.0000	99.9761	99.9794	0.0000	0.057
12	0.346003	0.0000	0.0001	0.0000	99.9761	99.9795	0.0000	0.012
13	0.342704	0.0010	0.0000	0.0000	99.9771	99.9795	0.0000	0.000
14	0.322206	0.0000	0.0002	0.0000	99.9771	99.9797	0.0000	0.015
15	0.291611	0.0073	0.0032	0.0000	99.9844	99.9829	0.0000	0.054

表1隔震结构周期对比

阶数	YJK(s)	ETABS(s)	差值(%)
1	2.5897	2.5897	0
2	2.5796	2.5796	0
3	2.4639	2.4639	0
4	0.6716	0.6716	0
5	0.6007	0.6007	0
6	0.5481	0.5481	0
7	0.5300	0.5300	0
8	0.5027	0.5027	0
9	0.4378	0.4378	0
10	0.4012	0.4012	0
11	0.3954	0.3954	0
12	0.3460	0.3460	0
13	0.3427	0.3427	0
14	0.3222	0.3222	0
15	0.2916	0.2916	0

五、ETABS 和 YJK 快速非线性(FNA)时程分析计算结果对比

YJK 的时程分析的参数修改如下。

40元30.0240-117.713930.0	<u>сп</u>		反应增力机参数(半位,5)	0.01
添加地震波	删除选	中地震波	起始周期	0.01
			终止周期	6
名称			周期步长	0.02
1 0.435.3_			特征周期(s)	0. 45
			② 司振望数	
YJK的时程	記分析计算	参数	设防烈度	8 (0.2g)
YJK的时程	是分析计算	参数	公司振望数 设防烈度 地震影响	8 (0.2g) 罕遇地震
YJK的时 移 _{积分时长(s)} 35	程分析计算 _{积分步长} (s)	参数 0.02		8 (0.2g) 罕遇地震 400
YJK的时 积分时长 (s) 35 结构阻尼比 (%) ④ 全楼统一	程 <mark>分析计算</mark> _{积分步长} (s)	参数 0.02 5	参与振尘数 设防烈度 地震影响 主方向峰值加速度(cm/s [*]) 次方向峰值加速度(cm/s [*])	8 (0.2g) 罕遇地震 400 0
YJK的时 希 积分时长(s) 35 结构阻尼比(%) @全楼统一 ① 按材料区分	程 <mark>分析计算</mark> ^{积分步长} ⑸	参数 0.02 5 2	 参 司 振 坐 数 设防烈度 地震影响 主方向峰值加速度(cm/s²) 次方向峰值加速度(cm/s²) 地震影响系数最大值 	8 (0.2g) 字遇地震 400 0.9
YJK的时希 积分时长(s) ³⁵ 諸构明尼比(%) ③全様统- ① 技材料区分	<mark>後分析计算</mark> ^{取分歩长(s)} _網 _{混凝土}	参数 0.02 5 2 5	参司振望数 设防烈度 地震影响 主方向峰值加速度(cm/s ²) 次方向峰值加速度(cm/s ²) 地震影响系数最大值 ☑ 只计算主方向地震效应	8 (0.2g) 罕遇地震 400 0 0.9

1、层剪力计算结果对比

表 2 时程分析地震层剪力对比

层数	YJK(KN)	ETABS(KN)	相对差值
5	1843.83	1842.15	0.091%
4	4008.77	4007.23	0.038%
3	5655.99	5656.50	0.009%
2	8388.64	8392.56	0.047%
1	11293.32	11301.93	0.076%

2、隔震支座 X 向地震单工况最大拉压内力对比

支座	YJK	ETABS	ETABS	ETABS	相对误差
编号	最大值	支座最大值	间隙最大值	最大值	(%)
1	52.1174	52.2	0	52.2	0.158488
2	67.083	67.22	0	67.22	0.204225
3	62.2784	62.04	0	62.04	0.382797
4	54.6968	54.56	0	54.56	0.250106
5	6.0619	6.13	0	6.13	1.12341
6	6.54866	6.62	0	6.62	1.089383
7	9.23217	9.17	0	9.17	0.673406
8	12.1828	12.14	0	12.14	0.351315
9	3.86782	3.84	0	3.84	0.719268
10	0.830175	0.79	0	0.79	4.839341
11	1.13905	1.09	0	1.09	4.30622
12	4.05021	3.97	0	3.97	1.980391
13	0.81509	0.84	0	0.84	3.056104
14	1.19301	1.21	0	1.21	1.424129
15	1.22252	1.08	0	1.08	11.65789
16	0.966122	0.85	0	0.85	12.01939
17	2.14564	2.11	0	2.11	1.661043
18	2.44624	2.42	0	2.42	1.072667
19	1.76458	1.79	0	1.79	1.440569
20	1.39568	1.4	0	1.4	0.309527
21	2.96612	3.08	0	3.08	3.839359
22	4.23921	4.19	0	4.19	1.160829
23	4.29636	4.21	0	4.21	2.010074
24	2.29042	2.25	0	2.25	1.764742
25	43.4608	43.39	0	43.39	0.162905
26	57.0805	56.96	0	56.96	0.211105
27	53.2719	53.36	0	53.36	0.165378
28	42.1632	42.24	0	42.24	0.182149

表 3 时程分析各隔震支座地震单工况下最大拉内力对比(kN)

支座	YJK	ETABS	ETABS	ETABS	相对误差
编号	最大值	支座最大值	间隙最大值	最大值	(%)
1	-485.87	-48.56	-437.08	-485.64	0.047338
2	-629.844	-62.93	-566.4	-629.33	0.081608
3	-581.912	-58.22	-523.98	-582.2	0.049492
4	-507.918	-50.84	-457.52	-508.36	0.087022
5	-78.7926	-7.73	-69.53	-77.26	1.945107
6	-82.7943	-8.13	-73.13	-81.26	1.853147
7	-99.7812	-9.98	-89.78	-99.76	0.021246
8	-127.88	-12.81	-115.33	-128.14	0.203316
9	-32.7068	-3.15	-28.32	-31.47	3.781477
10	-10.1688	-0.96	-8.62	-9.58	5.79026
11	-11.7781	-1.13	-10.21	-11.34	3.719615
12	-34.3122	-3.45	-31.05	-34.5	0.547327
13	-9.18022	-0.79	-7.1	-7.89	14.05435
14	-13.0339	-1.16	-10.46	-11.62	10.84787
15	-11.211	-1.12	-10.07	-11.19	0.187316
16	-9.58118	-0.93	-8.33	-9.26	3.352197
17	-24.6245	-2.4	-21.58	-23.98	2.617312
18	-19.4114	-1.86	-16.73	-18.59	4.231534
19	-18.0414	-1.87	-16.86	-18.73	3.816777
20	-13.334	-1.35	-12.13	-13.48	1.094945
21	-27.139	-2.52	-22.72	-25.24	6.99731
22	-33.2968	-3.11	-27.99	-31.1	6.597631
23	-34.4039	-3.58	-32.25	-35.83	4.14517
24	-25.5709	-2.64	-23.77	-26.41	3.281464
25	-464.891	-46.62	-419.57	-466.19	0.27942
26	-603.524	-60.55	-544.99	-605.54	0.334038
27	-578.285	-57.54	-517.88	-575.42	0.49543
28	-459.74	-45.8	-412.24	-458.04	0.369774

表 4 时程分析各隔震支座地震单工况下最大压内力对比(kN)

对于 ETABS 而言,由于在只受压状态下或只受拉状态下隔震支座和间隙单元都是线性的,所以隔震支座单元的最大最小拉压力和间隙单元的最大最小拉压力是有可加性的, 相加后的值恰好和 YJK 中支持拉压刚度不一致的隔震支座单元完全等效。

从以上两表中可以看出,除了13、14、15、16 这 4 个位于结构正中间一列的隔震支座 之外,两个软件计算结果的差别几乎可以忽略不计。而这 4 个隔震支座由于位于结构 X 向正中间,在 X 向地震作用下其拉压力接近 0,所以深究这 4 个支座拉压内力的意义不 大。

支座编号	YJK 最大值	ETABS 最大值	相对误差(%)
1	311.969	311.62	0.11187
2	314.405	313.92	0.15426
3	315.607	315.07	0.170148
4	312.568	312.01	0.178521
5	313.068	312.91	0.050468
6	430.64	430.4	0.055731
7	377.279	377.53	0.066529
8	359.573	359.19	0.106515
9	313.234	313.19	0.014047
10	361.47	361.32	0.041497
11	377.072	377.33	0.068422
12	359.532	359.19	0.095124
13	313.447	313.45	0.000957
14	361.527	361.42	0.029597
15	362.672	362.52	0.041911
16	359.602	359.28	0.089543
17	313.185	313.19	0.001597
18	361.514	361.41	0.028768
19	362.558	362.41	0.040821

表 5 时程分析各隔震支座地震单工况下 X 向最大内力对比(kN)

20	359.539	359.23	0.085943
21	358.548	358.56	0.003347
22	430.737	430.55	0.043414
23	431.861	431.62	0.055805
24	359.519	359.23	0.080385
25	311.759	311.53	0.073454
26	314.432	314.1	0.105587
27	315.265	314.9	0.115776
28	312.497	312.11	0.123841

第五章 隔震结构分部设计法算例

由上表可以看出,两个软件对隔震支座最大水平内力的计算结果是高度一致的。

两个软件对隔震支座最大相对位移的计算偏差情况与内力的偏差情况完全类似。用 户有兴趣可以自行对比,此处不再赘述。

六、预置工况组合下隔震支座的拉压应力输出

在弹性时程分析计算菜单中专门设置了菜单"工况组合"和"隔震支座"。

模型荷载率	入	前处理及计	算 设	计结果	弹性时	相 分析	楼板及谈	备振动	预应力	工具編	初胡	设计	基础设	计施工图	设计 预制构件施工图	
]		E y	4	R	AA	F	4		1					<pre>b</pre>		
波人工波	地震波	工况定义	工况组合	计算	节点变形	楼层结果	连接单元	能量曲线	隔震支座	隔震层	隔震送审报	告院	加阻尼比	反应谱规范谱		
(生成	Æł≆	J4 L1 700		11.000		•	.1 700			-	-		-0.000 \ 1.40h			
E义地震波		前处理	-	计具		后的	心理			陶炭短	异	1	戚辰计具	刘比图		_
			工况组合													×
			序号	恒载	系数	活载系数	峰值加	速度类型	主方向峰	值加速度	(cm/s2)	次方	向峰值加速	度(cm/s2)	竖方向峰值加速度(cm/s2)	Τ
			1	0.	00	0.00	PGA			510			0.00	3	0.00	1
	7火≦	P位移	2	1.	00	0.50	PGA			510			433.5	i.	0.00	
	E	胚力	3	1.	15	0.575	PGA			510			433.5		0.00	
	打	立应力	4	0.	85	-0.075	PGA			510			433.5		0.00	
重力	荷载付	代表值	5	1.	00	0.50	PGA			0			0.00	8	0.00	
			注:组合	1是用于	计算水平地	震作用的默	认组合。该 增加组合	组合不考虑	竖向荷载作) 聊除组合	用,且不能]	ど被删除。 确定		I	取消		

计算结束后,点击"隔震支座应力图"按钮,就可以看到在该工况组合下的隔震支座最大应力值(前提是隔震支座参数输入时给了面积参数,否则按 0 处理),选定 U1 方向,则为轴向最大拉压应力值。

七、隔震支座的滞回曲线输出

在弹性时程分析计算菜单中专门设置了菜单"连接单元"。

模型荷载的	俞入	前处理及计	算 设	计结果	弹性时	相分析	楼板及设	备振动	预应力	工具編	一砌休	设计	基础设	计 施工图	设计 预制构件施工	朝
]		T	4	R	Æ	F	4		↓[]				-	<pre>b</pre>		
波人工波	地震波	工况定义	工况组合	计算	节点变形	楼层结果	连接单元	能量曲线	隔震支座	隔震层	隔震送审报	告附	加阻尼比	反应谱规范谱		
く主成	卫士	前外理		计管		• ==t	75.7冊				笛	18	海斗管	VITH/ISI	_	
						147				THE REAL			WAY 11 21			×
			序号	恒载	系数	活戴系数	峰值加	速度类型	主方向省	值加速度	(cm/s2)	次方向	的峰值加速	度(cm/s2)	竖方向峰值加速度(cm/s2	2)
			1	0.	00	0.00	PGA			510			0.00		0.00	
	7水≦	P位移	2	1.	00	0.50	PGA			510			433.5		0.00	
	日	顽力	3	1.	15	0.575	PGA			510			433.5	d.	0.00	
	拉	应应力	4	0.	85	-0.075	PGA			510			433.5	0	0.00	
重力	荷载作	代表值	5	1.	00	0.50	PGA			0			0.00	() () () () () () () () () ()	0.00	
			注: 组合	1是用于	计算水平地	震作用的默	, 认组合。该 增加组合	组合不考虑	竖向荷载作) 删除组合	月,且不能	と被删除。 确定		I	见消		

点击"连接单元"按钮后,软件自动弹出如下图的右侧对话框,并绘图。只需在右 侧对话框选定对应的地震波、方向、坐标轴种类等内容,就可以采用拾取绘线、拾取绘 表按钮方便的点选图中粉色的构件来获取相应的图线和图表了。

以1号隔震支座为例,其轴向拉压变形内力曲线(注意拉压不一致)为:

其 X 向变形-内力滞回曲线为:

八、结论

1、YJK采用的隔震支座单元,支持拉压刚度不一致,摒弃了采用隔震支座并联间隙 (GAP)单元模拟拉压刚度不一致的做法。用户建模时只需要直接输入拉压刚度,而不 用再单独建立间隙单元,也不需要考虑为隔震支座单元和间隙单元分配轴向刚度的问题。 计算结果表明,YJK的隔震支座单元与 ETABS 中采用隔震支座与间隙单元并联方式的计 算结果高度一致。另外,当用户输入了隔震支座面积时,还可以很方便的获得每个隔震 支座的应力。

2、快速非线性时程分析法隔震计算的 YJK 与 ETABS 结果对比方面,就宏观指标而 言,两个软件计算的各楼层剪力几乎没有差别。每个隔震支座的内力,位移的差别亦可 忽略不计。

3、YJK 弹性时程模块的"工况组合"功能,可以很方便的看到组合后隔震支座的内 力,应力和位移。

4、YJK 弹性时程模块的"连接单元"功能,可以很方便的获取非线性构件的各种计

算结果数据,以及滞回曲线等。

ETABS 算例 2—东川紫荆家园

一、工程概况

抗震设防烈度 9 度,设计基本地震加速度峰值为 0.40g,设计地震分组第二组, II 类场地,场地特征周期 0.40s。采用剪力墙结构形式,楼层数为 18 层,建筑结构高度 58.8m, 宽 25.3m,高宽比 2.3。属于标准设防类,丙类建筑。

二、计算模型

该工程从 ETABS 数据转换而来。为防止两个软件对模型的质量分布不一致,再将生成的 YJK 工程转换回 ETABS,这样计算结果更具可比性。

本工程采用的橡胶隔震支座,在选择其直径、个数和平面布置时,主要考虑了以下 因素:

(1) 根据《抗规》12.2.3 条,同一隔震层内各个橡胶隔震支座的竖向压应力宜均匀, 竖向平均应力不应超过丙类建筑的限值 15Mpa。

(2) 在罕遇地震作用下,隔震支座不宜出现拉应力,当少数隔震支座出现拉应力时,

其拉应力不应大于 1MPa。

(3)隔震支座的极限水平变位应小于其有效直径的 0.55 倍和各橡胶层总厚度 3 倍 二者的较小值。

本工程共使用了 29 个支座,各类型支座数量及力学性能详见表 7。隔震支座平面布 置见图 4。隔震结构屈重比为 0.025。

下图是在 ETABS 中定义的隔震支座的属性参数,以用的较多的 LRB600 型支座参数 为例。

第五章 隔震结构分部设计法算例

白居田と口	6日			非线性连接方向属性	
后田		转动惯母 1	0.		
● ● ●	0.		0.	属性名称	LRB900
±±	172	(本元)(()里 2 (太元)(世日) 2	0.	「方向	, U1
~~ R M		我幼饭里 5		**刑	Isolator1
方向属性一方向	非纬性	属性		***	压
V U1	Г	修改/显示 U1	高级		
🔽 U2	~			有效刚度	380000.
🔽 U3	~			有效阻尼	0.
∏ B1	Г	修改/显示 B1			
☐ R2	Г	修改/显示 R2	确定	U1的	属性
☐ R3	Г	修改/显示 R3	取消		

┌标识──		- 标识	
属性名称	LRB900	属性名称	LRB900
方向	U2	方向	U3
类型	Isolator1	类型	Isolator1
非线性	Yes	非线性	Yes
线性属性		线性属性	
有效刚度	2300	有效刚度	2300
有效阻尼	0.	有效阻尼	0.
剪切变形位置		剪切变形位置	
距J端的距离	0.	距J端的距离	0.
- 非线性属性		非线性属性	
刚度	18850.	刚度	18850.
屈服强度	140.	屈服强度	140.
屈服后刚度比	0.0769	屈服后刚度比	0.0769
U 2自	勺属性	U3É	的属性
确定		确定	

与算例1一致,为了实现隔震支座轴向拉压刚度不一致,在 ETABS 中为每个隔震支座下都设置了 Gap 单元如下图:

其属性参数设置如下图。

非线性连接属性数		非线性连接方向属性	
属性名称 一总质重与总重 质重 重重 一方向属性 方向	2GR: 里 [0. 非线性	标识 属性名称 方向 类型 非线性 线性属性 有效刚度 有效阻尼	2GR800 U1 Gap Yes 5940000, 0.
₩ U1	1	Gap单元	论的属性参数
🗖 U3	Г	「非线性属性	
🗖 B1	Г	刚度	5940000.
□ R2	Г	间隙	0.

下图是 ETABS 时程分析计算输入的地震波之一。

函数名称	REN1	
数文件 浏览 文件名 浏览 [M]其他特种/或震隔震·东川紫荆家园二期1、 44k 福富分析报告·rr-0508/84程/以1.bxt 要跳过的标题行 夏跳过的标题行 1 每行要跳过的前缀字符 0 每行点数 1 转换为用户定义的 显示文件	值力: ○ 时间和函数值 ○ …的等间隔值 格式类型 ○ 自由格式 ○ 固定格式 每项的字符	0.02
^{嫩图表} Etabs时程计		
显示图表	(26.5911, 0.0142)	

#312£_1	况名		REN1X		
500	振用	ire e	ſć	お/見示	
万何突型 Nonlinear	▼ 输出时段数			1501	
高级	」	胡利的大小		02	
18144	 Աե	-次时程开始	Г	-	
会荷载					
荷载	函数	比例系数	到达时间	角度	
acc dir 1 💌 I	REN1	6.2	0.	0.	
acc of 1	nets i	0.2	0.		
Etabs	1程计	算地震	波的比	例系数	

三、YJK 计算模型

对 YJK 模型中的隔震支座做如下设定,以 2LRB900 隔震支座为例,其轴向压刚度为 7600000 kN/m,拉刚度为 760000kN/m,横截面积为 1.272m²。需要补充说明的是,此 时 YJK 的隔震支座单元相当于 ETABS 中隔震支座与 Gap 单元并联,所以其有效刚度为 ETABS 中隔震支座与对应 Gap 单元的有效刚度之和。

员计结	Į.	弹性时程	分析	直接积分	法时程	楼	反及设备机	ಕ್ಷಮ ಕ	页应力	砌体	设计	北 基础	设计	施丁图设	计钢	告构图	非线
		B	۲ 🌑	D 🛱			L'	C	譮		Į,	2	TTTT		Ħ	R	
远属性	节点属的	生 抗震	材料 性	能人防	删除	复制	多塔定义	楼层属性	风荷载	计算长	度	温度荷载	活荷折减	生成数据	计算简图	计算	
-	-	等级	强度设	计构件	-	-	-	-		-		-	-	及数检	•	-	第1标准
7	ŝ	12	/	> +i	}]≠	/	Jha	A	🖌 删除周	部系	度	温度荷载	活荷折减	生成	数据	计算	-
	11		. 0		ا			and -	▲ 删除约	東							
	附加质的	重 同部坐	际条 定 连接	义 単点 属性	约束网络	点约 束 16	过重文性 :	支座位移 -	🖉 删除的	立移							
				_	关闭	fl				-							
· '						~											
×						a	(Langer	4.									
ю	桶震交	:)))	•		72	^达 职定义	<u></u> 進援周期	<u><u>∓</u>1 ▼]</u>									
		有效刚度 (kaN/m)	有效阻加 (kkN. s/m	! 非线性)	刚度 (kdl/m) l	屈服力Ⅰ 川:抗拉冈	av 屈服后 MBV1:截	闲度比 面积m2									
	🔽 V1	7600000	0		'600000	760000	1.272										
	🔽 U2	4600	0		37700	280	0.077										
	🔽 V3	4600	0		37700	280	0.077										
	🕅 R1	0	0														
	🕅 R2	0	0														
	🕅 R3	0	0														
	注意:差	完义了节	占局部坐相	系列的													
	局部坐	标系下各种	₫														
1									1								

下图是 2LRB900 隔震支座在 YJK 单点约束下的隔震参数。

隔震支座	
U1 KE:7.6e	+006 CE:0 Kc:7.6e+006 Kt:760000 A=1.272
U2 KE:4600	CE:0 K:37700 KY:280 KYR:0.077
U3 KE:4600	CE:0 K:37700 KY:280 KYR:0.077
^	

YJK 可在隔震支座属性中直接支持拉压刚度不一致,所以不再需要 GAP 单元。

四、隔震结构模态周期计算结果对比

阶数	YJK(s)	ETABS(s)	差值(%)
1	2.9595	2.9652	0.192499
2	2.9424	2.9388	0.122655
3	2.5204	2.5254	0.196715

表1 隔震结构周期对比

第五章 隔震结构分部设计法算例

4	0.6597	0.6731	2.036683
5	0.6555	0.6512	0.662853
6	0.572	0.5819	1.733217
7	0.5642	0.5598	0.781106
8	0.4218	0.4084	3.175202
9	0.3733	0.3651	2.201447
10	0.3254	0.3289	1.083589
11	0.3095	0.2997	3.171244
12	0.2875	0.2929	1.868174
13	0.2814	0.2761	1.894812
14	0.2712	0.2633	2.897493
15	0.2587	0.2568	0.715501

五、时程分析计算结果对比

YJK 的时程分析的参数修改如下。

	放选职与积分参数设	五		反应谱分析参数(甲位:s)	Sec
	添加地震波	删除选	中地震波	起始周期	0.01
1999				终止周期	6
	名称			周期步长	0.02
1				特征周期(s)	0.4
	YJK时档	分析计算	参数	参与振型数	30
				设防烈度	9 (0.4g)
				设防烈度 地震影响	9 (0.4g) 罕遇地震
积分	1时长(≤) 35	积分步长 (s)	0.02	 设防烈度 地震影响 主方向峰值加速度(cm/s[*]) 	9 (0.4g) 罕遇地震 620
积分结构	附长(s) 35 阻尼比(%)	积分步长 (s)	0.02	设防烈度 地震影响 主方向峰值加速度(cm/s ²) 次方向峰值加速度(cm/s ²)	9 (0.4g) 罕遇地震 620 0
积分 结构 ◎ ≦	計时长 (s) 35 阻尼比 (%) 全横统一 该材料区分	积分步长(s) 钢	0.02 5 2	 设防烈度 地震影响 主方向峰值加速度(cm/s²) 次方向峰值加速度(cm/s²) 地震影响系数最大值 	9 (0.4g) 罕遇地震 620 0 0.9
积分 结构 ◎ ≦ ○ 打)拍长(s) 35 阻尼比(%) 全楼绕— 该材料区分	积分步长 (s) 钢 混凝土	0.02 5 2 5	 设防烈度 地震影响 主方向峰值加速度(cm/s¹) 次方向峰值加速度(cm/s¹) 地震影响系数最大值 2只计算主方向地震效应 	9 (0.4g) 罕遇地震 620 0 0.9

1、时程分析地震剪力对比

层数	YJK(KN)	ETABS(KN)	差值(%)
19	397.59	382.52	3.790337
18	3450.96	3521.45	2.04262
17	5724.69	5834.41	1.91661
16	7746.89	7788.41	0.535957

表 2 时程分析地震剪力对比

15	9654.84	9704.87	0.518186
14	11377.53	11454.83	0.679409
13	12936.13	13042.93	0.825595
12	14368.00	14499.42	0.914671
11	15722.60	15895.57	1.100136
10	17143.42	17357.66	1.249692
9	18597.43	18840.32	1.306041
8	20130.49	20415.18	1.414223
7	21783.56	22081.55	1.367958
6	23586.86	23868.53	1.194182
5	25567.42	25841.62	1.072459
4	27744.79	27973.59	0.824659
3	30385.48	30551.43	0.546149
2	33648.31	33733.42	0.25294
1	38726.25	38792.51	0.171098

第五章 隔震结构分部设计法算例

2、隔震支座 X 向地震单工况正负方向最大位移对比

表3 时程分析各隔震支座地震单工况下正向最大位移对比(mm)

支座编号	YJK	ETABS	相对误差
	最大值	最大值	(%)
9	337.9057	337.2854	0.183572
48	341.9461	341.894	0.015236
51	343.1581	343.1064	0.015066
52	343.1337	343.0796	0.015766
49	341.9557	341.9293	0.00772
62	344.8182	344.592	0.0656
65	345.0585	344.8606	0.057353
66	343.8742	343.6277	0.071683
67	343.8155	343.5719	0.070852
86	345.5337	344.9984	0.15492
94	346.1496	345.7047	0.128528

11	338.2758	338.0893	0.055133
95	346.171	345.7208	0.130051
97	345.4814	344.9298	0.159661
104	346.8594	346.1966	0.191086
108	347.136	346.485	0.187535
105	346.1318	345.6105	0.150607
106	346.0822	345.5564	0.151929
134	347.0243	346.6322	0.112989
131	348.3802	347.6057	0.222315
132	348.4132	347.6414	0.221519
135	346.9956	346.6107	0.110924
12	338.2753	338.0816	0.057261
14	337.9054	337.2966	0.180169
25	340.4142	340.1954	0.064275
21	341.4599	341.2678	0.056258
22	341.4542	341.2598	0.056933
26	340.4134	340.1995	0.062835
40	342.5473	342.4211	0.036842

第五章 隔震结构分部设计法算例

表 4 时程分析各隔震支座地震单工况下负向最大位移对比(mm)

支座编号	YJK	ETABS	相对误差
	最大值	支座最大值	(%)
9	-369.923	-371.078	0.312227
48	-374.456	-375.867	0.376813
51	-375.781	-377.174	0.370695
52	-375.754	-377.145	0.370189
49	-374.468	-375.907	0.384278
62	-377.846	-378.811	0.255395
65	-378.101	-379.086	0.260512
66	-376.894	-377.812	0.24357
-----	----------	----------	----------
67	-376.831	-377.754	0.244937
86	-379.405	-379.416	0.002899
94	-380.137	-380.234	0.025517
11	-370.321	-371.942	0.437728
95	-380.157	-380.248	0.023937
97	-379.343	-379.338	0.001318
104	-381.477	-380.973	0.132118
108	-381.748	-381.253	0.129667
105	-380.763	-380.321	0.116083
106	-380.711	-380.263	0.117675
134	-383.087	-381.909	0.307502
131	-384.572	-383.016	0.404606
132	-384.604	-383.053	0.403272
135	-383.057	-381.882	0.306743
12	-370.32	-371.932	0.435299
14	-369.924	-371.095	0.316552
25	-372.656	-374.073	0.380243
21	-373.795	-375.238	0.38604
22	-373.789	-375.229	0.385244
26	-372.657	-374.079	0.381584
40	-374.982	-376.429	0.385885

第五章 隔震结构分部设计法算例

六、结论

ETABS 算例 2 的东川紫荆家园模型比 ETABS 算例 1 中云县图书馆的模型要复杂很 多,其中包含了剪力墙等构件,由于两个软件对于墙计算采用不同的有限元单元,所以 结果差异较之算例 1 略大,但从以上给出两软件计算的模型周期,FNA 时程主方向上的 层剪力,隔震支座水平位移的结果比较来看,差距依然可以忽略。

YJK 算例 3—27328

一、工程概况

抗震设防烈度 7 度,设计地震分组第一组,II 类场地,场地特征周期 0.35s。采用框架结构形式。第 2 层为隔震层。为了转化到 ETABS 数据进行对比分析,特意把隔震层的 柱按照竖直的斜杆输入。

二、YJK 计算模型

λ	前处	理及计算	设计组	课	弹性时	程分析	直	接积分	去时程	t	娄板及设备排	辰动	预应力	砌体设	计 基础	暇计
0	4	10] /		Ð		$\mathbf{r}^{(1)}$	÷			ß	û î î	譮	01	2	TTTT
1 特殊	柱 特殊	朱支撑 特殊	朱墙 板属性	节点属	性抗震	材料	性能	人防	删除	复制	多塔定义	楼层属性	风荷载	计算长度	温度荷载	活荷折》
•		• •	• •	*	等级	調度	设计	构件		•			-	-	-	-
			3	8	t	1	17	+0	+	/	Lh,	D	🖉 删除周	部系 长度	温度荷载	活荷折
				Rithors		사동	÷ν	*		o 6占约击	心害古应 :	古灰位段	🖌 删除约	東		
				PICINHICA		±10.55	在接属性	<u>半</u> 点3	J# "	THE STATE	KHXE.	XIE1219	✓ 删除位	移		
				3					×	闭						
										-1						
li li	隔震支	座	-		ĵ	选取定义			•							
		有效刚度 (kN/m)	有效阻尼 (kN.s/m)	非线性	刚度 (kdN/m)	屈服力: /1:抗拉P	W 屈服 列度V1:	。 「 「 「 「 」 「 」 「 」 「 」 「 」 」 「 」 」 「 」 「 」 」 「 」 」 「 」 」 「 」 」 「 」 」 」 」 」 」	Ł		8	康 专座				
	V1	1750000	0	1	0	0	0				Di	1 KE:1.75e+0	06 CE:0			
	🗸 V2	1000	0		0	0	0				, C	3 KE: 1000 CE	:0			
	V3	1000	0	(m)	0	0	0									1
	R1	0	0													
	R2	0	0													
	R3	0	0													
	- 杏 学		与民家以好	⊊ mil⊞n												
j,	靜坐	家下各轴	auruppez Mo 1	天火明中X												

三、ETABS 计算模型

使用 YJK—ETABS 转换接口菜单,将 YJK 模型转为 ETABS 数据,并且在 ETABS 中导入和 YJK 相同的地震波。

下图是 ETABS 时程分析计算输入的地震波。

函数名称	REN1
	値次 ○ 时间和函数值 ○ …的等间隔值 0.02 格式类型 ○ 自由格式 ○ 固定格式 - 國定格式 - 國近的方符
・ ・ ・	

时程工	况名		REN1X	
选项				
分析类型	振雪	魍尾		(湿示
Nonlinear 🗨	·] 输出	出时段数	150	1
高级	输出	时段大小	.02	
	 	- 次时程开始	7	•
指定荷载 荷载 acc dir 1 ▼ F acc dir 1 F	函数 REN1 _	比例系数 • 4.	到达时间 0.	角度 0.
Etabs	相社	算地震	波的比例	利系数
	添加(A)	, 修改[<u>M</u>]	, 删除(D)	,

四、YJK 与 ETABS 结果对比

1、周期对比

周期阶数	YJK 结果(s)	ETABS 结果(s)	相对误差(%)
1	1.5887	1.5884	0.0171
2	1.5832	1.5819	0.0821
3	1.4665	1.4656	0.0646
4	0.2646	0.2655	0.3371
5	0.2585	0.2576	0.3528
6	0.2553	0.2526	1.0744
7	0.1202	0.1203	0.1057
8	0.1198	0.1195	0.2195
9	0.1165	0.1160	0.3888
10	0.0787	0.0808	2.6442
11	0.0712	0.0685	3.7992
12	0.0682	0.0683	0.1129
13	0.0329	0.0330	0.1581
14	0.0324	0.0324	0.0586
15	0.0288	0.0288	0.0764

2、时程计算最大层剪力对比

楼层号	YJK 结果(kN)	ETABS 结果(kN)	相对误差(%)
4	548.851	550.6	0.31867
3	1688.934	1695.93	0.41423
2	2589.314	2596.31	0.27019
1	3672.737	3679.68	0.18904

YJK 算例 4—23811

一、工程概况

抗震设防烈度 8 度,设计基本地震加速度峰值为 0.24g,设计地震分组第一组,三类

场地,场地特征周期 0.65s。框剪结构形式,楼层数为 9 层。

二、YJK 计算模型

在计算前处理用单点约束菜单设置隔震支座

前人	前处理及	计算	设计组	吉果	理性时	[程分析	顶应力]	砌体设计	基础	发计	随上图设	में वि
	0				B	ث] 🔘			ß	C	譮		2
絮 特殊	柱 特殊支撑	特殊墙	板属性	节点属性	抗震	材料 重要性	11 删除	复制	多塔定义	楼层属性	风荷载	计算长度	温度荷
•	•	-	- L	-	等级	强度系数		-					
			特殊有	ŝ	12	+0-		~	L.	A .	删除局部	彩系 [长度	温度荷
				W)		• Ŧ	4			and a	- ▶ 删除约到	ŧ.	
			ſ	附加质量	局部坐	标系 单点约	束 两点:	约束 词	设置支座 支	座位移 🍃	_ / 删除位和	3	
								关闭					
								~14]					
								ງ [FFilmer RL				A A A A A A A A A A A A A A A A A A A
隔震	支座	-										- 24	1
1	有效刚度 (kN/m)	有效阻尼 (ktN.s/m)	非线性	刚度 (kaN/m)	屈服力 (dan)	屈服后 刚度比		1	ffallen Re			21	- Harten er
V 💟	1 4345000	0										5	Υ .
V 🔽	2 2367	0		17150	179.2	0.08			(Bax.		- Brunn		
V 💟	3 2367	0		17150	179.2	0.08					-0-	1	-
R	1 0	0							Dear Maria		10-11		T
R	2 0	0						THE R.I			- C		
R	3 0	0											
· + #.	*****								The second se	6.6			
局部	4年天 175		畄占	纳击	沿出	幅震	र्मा र		141	Aus ea	- Internet	21	Hanne ter
		/13		2471	- M.B		CLL	4	T		T		T

三、ETABS 计算模型

使用 YJK—ETABS 转换接口菜单,将 YJK 模型转为 ETABS 数据,并且在 ETABS 中导入和 YJK 相同的地震波。

下图是 ETABS 时程分析计算输入的地震波。

值为: 时间和函数值 ・ 自格式 ・	0.02
○ 固定格式 每项的字符	Γ
	SPURIF≠++

时柱_	E况名		REN1X	
选项				
分析类型	振	型阻尼		改/显示
Nonlinear	▼ 輸出	出时段数	15	01
高级	輸	出时段大小	.0.	2
	 		-	
	<i>у</i> .	上/八川/11/12/77:20	14	-
皆定荷载	尿斷	比例系数	到达时间	角度
acc dir 1 💌	REN1	 ▼ 4. 	0.	0.
acc dir 1	REN1	4	0.	0.
Etabs	寸程计	算地震	波的比	例系数

四、YJK 与 ETABS 结果对比

1、周期对比

周期阶数	YJK 结果(s)	ETABS 结果(s)	相对误差(%)
1	2.7419	2.7370	0.178708
2	2.702	2.6988	0.118431
3	2.3991	2.3967	0.100038
4	0.5102	0.5052	0.980008
5	0.5032	0.4973	1.172496
6	0.361	0.3556	1.495845
7	0.1441	0.1381	4.163775
8	0.1325	0.1300	1.886792
9	0.0957	0.0931	2.716823
10	0.0795	0.0752	5.408805
11	0.0666	0.0648	2.702703
12	0.0553	0.0523	5.424955
13	0.0502	0.0486	3.187251
14	0.0443	0.0429	3.160271
15	0.0435	0.0412	5.287356

2、FNA 时程计算最大层剪力对比

楼层号	YJK 结果(kN)	ETABS 结果(kN)	相对误差(%)
9	3846.828	3943.36	2.509392
8	7042.031	7160.24	1.678621
7	9557.148	9562.55	0.056523
6	12013.26	12012.99	0.002264
5	14220.4	14174.39	0.323521
4	15997.96	15909	0.556052
3	17477.05	17470.47	0.037644
2	17972.15	18027.97	0.310569
1	24682.77	24453.43	0.92913

分部设计法常见问题

分部设计方法即将整个隔震结构分为上部结构、隔震层和下部结构及基础,分别进 行设计。

概括来说:

上部结构:沿用一般抗震结构的设计方法,水平地震作用采用隔震以后的地震作用 标准值。隔震支座不能隔离竖向地震作用,所以与竖向地震作用相关的不降低(如轴压 比等)。

隔震层:在满足长期荷载下压应力要求外,除了满足减震目标后,还得满足短期荷载下的压应力、拉应力以及隔震支座的位移。

隔震层以下结构:地震作用计算、抗震验算和抗震措施,应进行设防地震(中震) 的抗震承载力验算,并按罕遇地震(大震)进行抗剪承载力验算。隔震层以下地面以上 的结构在罕遇地震(大震)下的层间位移角控制。

基础: 地基基础的抗震验算不考虑隔震产生的减震效应,按本地区设防烈度进行设计。

YJK 的反应谱计算、弹性时程(FNA、直接积分法)、动力弹塑性分析、静力弹塑性 分析都支持隔震结构的计算。

一、建模

1、隔震支座设置

可以用单点约束、两点约束、斜杆设置连接属性中的"隔震"连接单元来定义。当 隔震支座所处位置的节点连接关系较为简单,没有横向构件与之相连时,用户可以直接 采用单点约束来很方便的布置隔震支座,单点约束是本层柱底。

2、程序支持不等高隔震吗

支持,按照隔震支座的实际位置布置。

216

3、墙下可以直接布置隔震支座吗?

隔震垫一般都是圆形杆状,所以通常工程中都是用一根托墙梁拖住上面的墙,下面 做短柱,短柱底设置隔震支座。

如下图:

4、一般什么情况下需要把下支墩建立到整体模型中?

隔震垫上的短柱一般称为上柱或上墩,隔震垫下的柱子一般称为下支柱下支墩或者 支墩,本文统一为支墩。支墩一般较矮,建模可以不建立。如下图,用单点约束在隔震 层设置。

但是当下支墩高度较高时,或者下支墩顶有联系梁连接时,则下支墩部分的刚度较 大,整体结构计算不可忽略其刚度时,或者希望直接在整体模型中进行下支墩计算和设 计时,建议建立其下支墩层,3.4 层都是隔震层,在4 层用单点约束设置隔震支座,如下 图。

二、前处理设置

1、快速定义多种不同参数不同规格的隔震支座

(1) 首先在节点属性的"定义连接属性"中

(2) 点击"添加",需要几类规格的支座就添加几个,添加后左侧列表中显示,默 认名字为"连接属性 x",点击"连接属性 x"修改其名称,可以按照所需的规格,比如 LRB550、LRB600等,

(3)在左侧列表中选择某一个单元,例如LRB600,然后在右侧的类型中选择"隔 震支座",并在下面参数框中输入相关参数,设置好之后,点击"应用",即可为LRB600 定义为所需的一类隔震支座了。

140000		NHINE X LE		•				
至接属性3		有效刚度 (ktN/m)	有效阻尼 (ktN.s/m)	非线性	刚度 (kkN/m)	抗拉刚度 (kaW/m)	截面积 (m2)	
	V 1	2.6e6	200	V	2.6e6	2.6e5	0.332	
N						屈服力ki	屈服后刚度	鼣
	🔽 U2	2480	0		0	0	0	
	EU 🔽	2480	0		0	0	0	
	RI	0	0					
	- R2	0	0					
	- R3		0					

(4)在单点约束、两点约束、特殊支撑设置连接属性对话框中,选择连接单元类型为"隔震支座",右侧即出现"选取定义",从其下拉列表中选择已经定义的某个类型支座名称即可显示该类型的参数,然后就可以在模型中进行布置了。

四辰又	()£			X	西拟在入	元相关定义
	有效刚度 (kdN/m)	有效阻尼 (ktN.s/m)	非线性	刚度 (kaN/m)	抗拉刚 (kN/m	尤相天定× LRB550 LRB600
U 1	0	0		0	0	连接属性3
					屈服力ki	屈服后刚度比
U 2	0	0		0	0	0
U 3	0	0		0	0	0
🗖 R1	0	0				
R 2	0	0				
R3	0	0				

nre >	2)£			le le	SAXEX [LADOUU
	有效刚度 (kkN/m)	有效阻尼 (ktN.s/m)	非线性	刚度 (ktN/m)	抗拉刚度 (kN/m)	截面积 (m2)
V1 🗸	2.6e+006	200	V	2.6e+00	260000	0.332
					屈服力Lan	屈服后刚度比
🗸 ປ2	2480	0		0	0	0
V V3	2480	0		0	0	0
R1	0	0		8 - S		
R2	0	0				
R3	0	0	Ì			

2、布置多种类型支座,想批量修改某一类型支座参数

首先要求是在"定义连接属性"中已定义了多个类型隔震支座,并已布置在构件或 节点上。此时想批量修改已布置的某一类型支座参数,可以打开"定义连接属性"中, 选中想要修改的支座名称,然后修改右侧相关参数,点击"应用"即可。

类型:	隔震支座	ŝ	•]		
	有效刚度 (kN/m)	N度 有效阻尼 非线性 刚度 抗拉刚度) (delf.s/m) (delf/m) (delf/m)		截面积 (m2)		
🔽 V1	3e+006	3e+006 200 📝 2.6e+00 260	260000	0.332		
					屈服力kN	屈服后刚度
💟 U2	2480	0		0	0	0
🔽 V3	2480	0		0	0	0
E R1	0	0]			
E R2	0	0				
R 3	0	0				

3、打印只显示支座名称的简图

在特殊支撑中,点击"显示连接参数",然后再切换到单点约束、两点约束等,则 可以切换成只显示规格名字,或者显示各详细的隔震支座参数。

第五章 隔震结构分部设计法算例

将此图形通过软件左下角的导出 dwg 按钮可以导出 dwg 简图,也可以直接进行打印。

4、隔震参数输入及各参数的意义

隔震支座的参数对话框如下图所示,其中1轴为轴向,2轴和3轴为水平方向。

隔震支	Σ <u>ه</u>	•		逆	珈定义 🛛	无相关定义	•
	有效刚度 (kkN/m)	有效阻尼 (ldN.s/m)	非线性	刚度 (kN/m)	抗拉刚度 (kN/m)	截面积 (m2)	
🔽 V1	2.445e6	0	V	2. 445e6	2.4e5	0.3	
					屈服力ы	屈服后刚度比	<u>.</u>
🔽 V2	1861	0		9290	90.2	0.77	
V V3	1861	0		9290	90.2	0.77	
🕅 R1	0	0]				
🕅 R2	0	0					
R 3	0	0					

单点约束1、2、3轴为整体坐标系Z、Y、-X方向。

线性部分的参数(有效刚度和有效阻尼)在3个坐标轴上意义一致,有效刚度的意 义是将非线性构件等效成一根线性构件后的刚度,此刚度对结构周期、反应谱计算和快 速非线性(FNA)时程分析结果有较大影响。有效阻尼只影响附加阻尼比,从而影响反 应谱计算结果,一般情况下有效阻尼可以填0。若想计算有效阻尼,也可参考YJK帮助 文档中的公式。

对于非线性参数,轴向和水平向意义不一致,下面分别说明。

(1) 轴向(U1) 非线性参数

刚度:隔震支座轴向受压刚度。

抗拉刚度:隔震支座轴向受拉刚度。

截面积:隔震支座的横截面积,反应谱及弹性时程模块会使用该参数计算隔震支座的拉压应力,若填 0,则对应的隔震支座拉压应力均为 0.

223

(2) 水平方向(U2、U3) 非线性参数

別度:隔震支座水平方向屈服前刚度

屈服力:隔震支座的屈服力。

屈服后刚度比:隔震支座屈服后的刚度与屈服前刚度的比值。

5、隔震参数输入举例及注意事项

隔震支座生产厂家给出的隔震支座参数表如图所示。

序号	型号	支座尺寸 边长或直 径	支座及铅 芯高度 (H)	竖向承 载力	设计位移 (100%)	铅芯屈 服剪力	安装高 度(Ha)	连接板尺 寸(B)	连接板尺 寸 (A)	水平等效 刚度	屈后刚 度(K ₂)	竖向压缩刚 度(Kv)
	(mm)	mm	mm	KN	mm	KN	mm	mm	mm	KN/mm	KN/mm	KN/mm
		600	175		85	99	225	640	640	2.89	1.72	3581
		600	201		104	84	251	640	860	2.64	1.83	3627
		600	188		96	84	238	640	860	2.86	1.98	3838
10		600	175	2000	85	84	225	640	860	3.22	2.23	4562
10	CLRB600 × 600	600	201	3000	104	99	251	640	860	2.78	1.82	3627
		600	188		96	99	238	640	860	3.01	1.97	3838
		600	175		85	99	225	640	860	3.38	2.22	4562
2		650	208		107	92	258	690	690	2.48	1.62	3051
		650	195		100	92	245	690	690	2.65	1.73	3099
10	CI PRCEO	650	182	2017	90	92	232	690	690	2.94	1.93	3593
19	CLRDDDU	650	208	3317	107	116	258	690	690	2.69	1.61	3051
						-	-	-	-	-		

以图中红框所在行为例,其截面为圆形,由表中给的数据可知以下隔震支座参数: 直径: 650mm

竖向压缩刚度: 3051kN/mm

水平等效刚度: 2.48kN/mm

屈服后刚度: 1.62kN/mm

屈服力: 92kN

按照目前大多数隔震工程的经验,隔震支座拉刚度为压刚度的 1/6~1/10,屈服后刚 度和屈服前刚度比一般取 1/13 至 1/15。若对这两个参数不确定,也可征求生产厂家的意 见。根据以上参数,可以将其换算为 YJK 隔震支座单元的输入参数(注意软件中的量纲 为 kN, m):

隔震支座面积: 3.14*0.65*0.65/4=0.332m²

U1方向有效刚度一般与压刚度设为一致: 3051000kN/m

U1方向非线性参数的压刚度: 3051000kN/m

U1方向非线性参数的拉刚度: 305100kN/m

U2 及 U3 方向有效刚度: 2480kN/m

U2及U3方向屈服后刚度比: 1/13=0.0769

U2及U3方向屈服力: 92kN

U2 及 U3 方向非线性刚度=屈服后刚度/屈服后刚度比=1620/0.0769=21060kN/m 由于不再推荐采用反应谱方法计算隔震结构,所以有效阻尼可以填 0。 最终设定好的参数对话框为:

截面积 (m2) 0.332 3服后刚度比	
0.332 1服后刚度比	
服后刚度比	. I
	6 I
0.769	
0. 769	

6、隔震支座的参数设置应该注意内容

隔震支座参数设置一般注意:

(1)隔震垫的线性有效刚度和非线性抗压刚度一般可以设置为一样,因为有铅芯橡 胶支座在竖向是线性的,而无铅芯的支座在三个方向都是线性的;

(2)隔震支座的非线性的抗拉刚度通常设置为抗压刚度的 0.1 倍(云南震安公司的 设置方式);

(3) 隔震支座的面积一定要设置,否则在时程分析中不能计算出支座的应力;

(4) 厂家给的隔震垫的参数中有线性有效刚度,屈服力、屈服前刚度和屈服后刚度, 其中无铅芯橡胶支座因为是线性支座,所以无屈服力、屈服前刚度和屈服后刚度; (5)在中震计算时候,应该采用剪切变形为100%时候的隔震垫的刚度和阻尼,在大震计算时候,600mm以下的隔震垫应该采用剪切变形为250%时候的刚度和阻尼,600mm及600mm以上的隔震垫可以采用剪切变形为100%时候的刚度和阻尼(抗规12.2.4条文说明)。

7、隔震支座中的天然叠层橡胶是否能够耗能?

滞回耗能

天然橡胶支座没有铅芯,不考虑阻尼耗能作用。填写参数应该是:U1的线性参数和 非线性参数都应填写,U2、U3可只填写线性参数。如下图式

	有效刚度 (kN/m)	有效阻尼 (kN.s/m)	非线性	刚度 (kdN/m)	抗拉刚度 (kN/m)	截面积 (m2)	
V1	305100	0	V	3051000	305100	0.332	
					屈服力kN	屈服后刚	度比
7 U2	2480	0		0	0	0	
Z V3	2480	0		0	0	0]
R1	0	0					
R2	0	0					
R3	0	0	1				

8、地震波选取

可在非隔震结构上选取地震波;

 基本要求: 7条波取平均,3条波取包络;天然波数量不少于波总数的2/3;弹性 时程分析时每条波计算所得结构底部剪力不应小于振型分解反应谱法计算的65%;多条 波时平均值不应小于80%;有效持时为结构基本周期的5~10倍;确定减震系数时按中 震计算;需考虑近场影响时地震波输入应考虑近场影响系数(确定减震系数时与之对比 的非隔震模型亦应按中震并乘以近场影响系数计算);

 2)地震波在主要周期(一般可取前3个周期)点上的相似性要求: 宜同时满足隔震 和非隔震在主要周期点上的相似性要求;

选波流程:先用非隔震模型选比目标波数还多的波,满足其规范上的基底剪力要求

和主要周期点上相差不大的要求,然后再用隔震模型,在这些已满足非隔震模型的波中 选择满足隔震模型的周期点上相似的波,一般满足第一周期就可。

三、计算及计算结果

1、快速非线性(FNA)方法介绍

快速非线性(Fast Nonlinear Analysis,简称 FNA)方法,是一种非线性的模态叠加 方法,原理是将结构的线性部分和非线性部分隔离开,通过非线性力迭代的方式对结构 进行计算。下面对其优缺点进行简单概括。

优点:其计算速度较之非线性直接积分法要快很多,适用于计算具有有限数量的非 线性构件、仅存在局部非线性行为的结构。因而在进行减震隔震计算时,若只考虑结构 中隔震支座、阻尼器、屈曲约束支撑等构件的非线性行为,而结构其余构件均考虑为线 性构件时,该方法较为实用。

缺点:由于该方法的计算依赖于结构的模态结果,所以非线性构件的线性部分的有 效刚度填写的准确与否,对计算结果将会有一定的影响。对于减震结构,由于隔震支座 的影响范围有限,使用 FNA 方法一般都可以得到较为准确的结果。但对于隔震结构而言, 由于隔震支座的加入,往往会较大的改变结构底部的力学性能,对结构的模态周期影响 很大,由其产生的非线性亦会影响结构的整体,从而不能严格满足"结构仅有局部非线 性"这一条。此时,若想用 FNA 法得到较为准确的结果,则需要将隔震支座的有效刚度 填写准确。若不能确定有效刚度,也可采用直接积分法对隔震层的层剪力进行校核。一 般而言,若 FNA 法计算的隔震层剪力偏小,则说明隔震支座的有效刚度值偏小;反之偏 大。

2、直接积分法介绍

盈建科软件的直接积分法采用 Newmark 方法,该方法是传统的动力分析隐式方法, 下面对其优缺点进行概括。

优点: 该方法对非线性动力分析非常有效,无论是局部非线性或是整体非线性,

227

Newmark 方法均能得到准确的结果。在盈建科弹性时程模块的直接积分法中,只考虑隔 震支座、阻尼器、屈曲约束支撑等特殊构件的非线性行为,计算过程中完全不依赖其线 性部分的有效刚度,只采用非线性参数进行计算,所以使用此方法计算时,不必考虑填 入的有效刚度是否准确。需要补充说明的是,直接积分法本身与振型(模态)毫无关联, 但由于隐式直接节分法一般采用瑞利阻尼,而瑞利阻尼系数的计算需要输入两个周期以 及对应的阻尼比,又由于周期分析是基于有效刚度的,所以有效刚度会间接的影响直接 积分法默认的瑞利阻尼,而瑞利阻尼作为直接积分法的阻尼项,会影响直接积分法结果。 当然,若用户自行确定瑞利阻尼,则也可与有效刚度完全无关。

缺点: 该方法在每个时间步进行计算时,都需要重新组装总体刚度矩阵,重新对刚 度矩阵进行分解,因而计算速度较之快速非线性法要慢很多。

3、上部结构最小楼层剪重比控制与调整

设置好本地区设防烈度后,软件自动按照输入的水平地震影响系数最大值计算最小 剪重比系数并进行最小剪重比调整。在 YJK 中因交互的是原设防烈度的地震影响系数最 大值(未考虑减震系数),故满足规范要求。

4、隔震层验算时各个组合设置

时程工况组合可按如下设置(以重力荷载代表值系数 0.5 为例):

按简化算法计算竖向地震时,竖向地震假设取重力荷载代表值的 20%;

重力荷载代表值下的压应力: 1.0D+0.5L

最大压应力: 1.0D+0.5L+1.0Fek+0.4*(0.2(1.0D+0.5L))=1.08D+0.54L+1.0Fek

最大拉应力=最小压应力: 1.0D-1.0Fek-0.5*(0.2(1.0D+0.5L))=0.9D-1.0Fek-0.05L 支座最大位移: 1.0D+0.5L+1.0Fek

第五章 隔震结构分部设计法算例

齐号	恒载系数	活载系数	峰值加速度类型	主方向峰值加速度(cm/s2)	次方向峰值加速度(cm/s2)	竖方向峰值加速度(cm/s2
1	0.00	0.00	PGA	510	0.00	0.00
2	1.00	0.50	PGA	0	0.00	0.00
3	1.08	0.54	PGA	510	0.00	0.00
4	0.9	-0.05	PGA	510	0.00	0.00
5	1.00	0.50	PGA	510	0.00	0.00

当反应谱计算竖向地震时,可直接输入竖向峰值加速度;

茅号	恒载系数	活载系数	峰值加速度类型	主方向峰值加速度(cm/s2)	次方向峰值加速度(cm/s2)	竖方向峰值加速度(cm/s2
1	0.00	0.00	PGA	510.00	0.00	0.00
2	1.00	0.50	PGA	0.00	0.00	0.00
3	1.00	0.50	PGA	510.00	0.00	132.6
4	1.00	0	PGA	510.00	0.00	165.75
5	1.00	0.50	PGA	510.00	0.00	0.00

5、计算水平减震系数β应用的地震水准

按《抗规》p419"计算隔震与非隔震两种情况的层间剪力,宜采用基本设防水准下 地震作用进行时程分析。"故应采用中震计算。

6、隔震下部结构设计

一般采用大震或中震反应谱设计,建议的做法是采用反应谱参数中提供的性能设计 中的"中震弹性、中震不屈服、大震弹性、大震不屈服"来实现,这样会自动不考虑地 震作用的分项系数,不考虑与地震有关的放大调整系数等,材料取对应的设计值、标准 值或者极限值等。

7、隔震层不应设置为地下室

如果设置成地下室,则因为地下室的侧向约束(土层水平抗力系数的比例系数 m 值) 对隔震层水平位移有约束作用,就算不出隔震效果,或者隔震效果很小。

8、对于非地震荷载工况仍采用隔震支座的线性参数中的刚度

由于隔震支座的非线性属性,其在地震荷载下和非地震荷载下的刚度是不同的,前面计算出的有效刚度和阻尼是针对地震力的大小计算出的,因此应限于地震工况使用。

当用户在地震计算参数中选择了减隔震元件有效刚度和有效阻尼采用迭代确定或者 自动采用弹性时程计算结果时,软件仅在地震计算工况下,对隔震单元采用迭代或读入 的直接积分法时程计算的有效刚度和阻尼,但是对于非连梁折减模型的非地震工况,不 采用这个有效刚度和阻尼。

对于恒活风等的非地震荷载工况,软件对隔震支座的有效刚度,仍采用该隔震构件 参数中的线性参数中的刚度,而对于阻尼,仍采用其他非隔震支座同样的阻尼。

9、隔震支座应力为0

为了得到隔震支座的应力,必须在隔震参数中正确输入隔震支座的面积,如果在参数中没有输入隔震支座的面积,隔震支座应力菜单输出的结果将是 0。

10、隔震支座反力及应力符号、单位

隔震支座内力、应力结果,内力为 kN,应力为 Mpa; 位移 mm

U1、U2、U3分别为整体坐标系的 Z 向、Y 向、-X 向。

11、考虑竖向地震的情况

上部结构水平减震系数小于 0.3 时,上部结构计算应考虑竖向地震;隔震层验算应 考虑竖向地震。也就是无论上部结构考不考虑竖向地震,隔震层都要考虑。

12、如何考虑竖向地震

《抗震规范》12.2.1 条规定: "隔震层以上结构的水平地震作用应根据水平向减震 系数确定; 其竖向地震作用标准值,8度(0.20g)、8度(0.30g)和9度时分别不应小于隔 震层以上结构总重力荷载代表值的20%、30%和40%。" 《抗震规范》12.2.5-4 条规定: "9 度时和 8 度且水平向减震系数不大于 0.3 时,隔 震层以上的结构应进行竖向地震作用的计算。隔震层以上结构竖向地震作用标准值计算 时,各楼层可视为质点,并按本规范公式(5.3.1-2)计算竖向地震作用标准值沿高度的分 布。"

《乌鲁木齐建筑隔震技术应用规定》2.3.4条规定:

1.9 度时和 8 度且水平向减震系数不大于 0.3 时,应进行上部结构的竖向地震作用计算;其它情况可不进行竖向地震作用计算。

2. 竖向地震作用标准值取值(8度0.2g、8度0.3g、9度分别不小于隔震层以上结构总重力荷载代表值的20%、30%和40%)。

由于隔震层对竖向地震作用没有隔震效果,且软件是根据水平地震影响系数最大值 计算竖向地震影响系数的,因此需要对竖向地震进行调整。

目前可以直接用简化方法,即重力荷载代表值的 20%、30%、40%来考虑。也可以 用上部结构参数中的反应谱法计算。

当采用反应谱法计算时,由于采用的地震影响系数最大值可以和水平地震不同,水 平地震考虑"调整后的水平减震系数"参数,而算竖向地震时程序自动不考虑"调整后 的水平减震系数",按原设防烈度的地震影响系数来取,所以可直接采用反应谱法计算 的竖向地震标准值。

对于隔震层的计算需要考虑三向地震,可在弹性时程模块中交互输入三向地震波峰 值加速度,进行时程分析。

13、下部结构规范要求的"上下层嵌固刚度比可取不大于 0.5",一般是指哪 两层

指隔震层上一层和隔震层下一层的刚度比。

14、下部结构中震和大震计算的包络设计

中震设计更建议用性能设计中的中震弹性或者中震不屈服来考虑。但抗震等级还按 原设防烈度设定,主要考虑其相关的构造要求。

包络参数设置:

第五章 隔震结构分部设计法算例

结构总体信息 计算控制信息 ^{控制信息}	包約	各设1 前梢	十 (型)	自动包	络设计		
屈曲分析 风荷载信息 基本参数	Ē	自自	性来 动取 在如	E Q框架和 注答DE	和框架−抗	震墙模型 · · · · · · · ·	+ 貸大值
指定风荷载 地震信息 地震信息 自定义影响系数曲线	т.	_ [与]	其他	模型进	HIDSF(Q1)	imates.	第二日
地震作用放大系数 性能设计	x	y	z	Ang	正截面	斜截面	模型路径
设计信息 手带载信息	0	0	0	0	0	1	

在前处理中指定需要包络的构件。当下部结构有多层时,一般情况下,对于隔震层 下一层与隔震支墩直接相连的竖向构件(柱)和与此柱相连的框架梁需要进行指定包络, 对于次要构件比如一般梁、悬挑梁都可不进行包络,直接取中震弹性结果。对于不与支 墩直接相连的楼层一般只指定相应的柱取包络即可。

15、规范要求上部结构设计不小于6度设防时的总水平地震作用

针对规范规定的不小于 6 度设防时的总水平地震作用,可以人工比较折减后的水平 地震影响系数最大值与 6 度设防时的数值,如果折减后的数值大,则计算结果自然满足 6 度设防要求;如果折减后的数值小,则"调整后的水平减震系数"按 6 度设防要求填写 相应折减比例即可。