YJK 减震结构设计 _{应用手册}

北京盈建科软件股份有限公司

2022.05

\square	求

第−	-章	消能减震基本概念	.1
	—,	消能减震概念	. 1
	二、	消能减震措施应用范围及减震效果综述	.1
	三、	常用消能减震装置介绍	. 1
第二	_章	YJK 减震设计计算要点	L2
	—,	消能部件的建立	12
	二、	消能构件的非线性属性	18
	三、	直接积分法时程分析计算减震器的有效刚度和阻尼	21
	四、	反应谱法整体计算中使用自动计算的有效刚度和阻尼	24
	五、	减震器附加给结构的有效刚度和阻尼的其他计算方法	26
	六、	减震结构推荐的计算方法	35
	七、	减震结构的中震设计方法	36
	八、	YJK 对于非地震荷载工况采用的减震器刚度	40
	九、	YJK 消能减震参数介绍	40
第三	E章	布置粘滞消能器结构小震设计实例	51
	工程	概况	53
	—,	对无控模型(原结构模型)进行小震反应谱法计算	54
	Ξ、	无控模型提高结构阻尼比试算,确定减震目标	59
	三、	初步设计有控模型方案	61
	四、	有控模型小震时程法计算	63
	五、	有控模型和目标无控模型小震时程结果校验	71
	六、	采用无控目标模型进行最终构件设计-传统方式	81
	七、	有控模型和无控模型大震弹塑性结果分析	82

第四章	布置粘滞消能器结构中震设计实例	95
工利	呈概况	95
—	无控模型进行中震反应谱方法计算,得到相应结果	96
<u> </u>	无控模型提高结构阻尼比计算,确定减震目标	98
三、	建立有控模型-初步设计	.103
四、	有控模型中震振型叠加法(FNA)时程计算附加阻尼比	.105
五、	有控模型和无控目标模型进行时程结果对比验证	.112
六、	采用无控目标模型进行最终结构设计	.114
七、	有控模型大震弹塑性时程分析	. 114
八、	粘滞阻尼器减震结构与 etabs 的案例对比	.114
第五章	布置屈曲约束支撑结构小震设计实例	127
工利	呈概况	127
—,	无控结构模型进行小震反应谱方法计算,得到相应结果	.128
二、	设定消能减震方案	. 129
三、	建立有控结构模型-初步设计	.129
四、	有控结构模型小震反应谱法计算	. 133
五、	有控结构模型小震作用下直接积分时程法计算	.134
六、	有控结构小震作用下反应谱法计算	. 141
七、	有控模型和无控模型中大震弹塑性时程分析对比	.147
第六章	布置屈曲约束支撑结构中震设计实例	156
工利	呈概况	156
—,	无控模型进行中震反应谱方法计算	. 157
<u> </u>	确定消能减震方案	. 160
三、	建立有控模型并进行中震反应谱计算	.161

四、	有控模型时程计算	165
五、	有控模型最终反应谱计算及设计	174
六、	有控模型大震弹塑性时程分析	179
章	常见问题	180
—,	建模	180
二、	连接单元定义	185
三、	计算及结果查看	193
ぎ 文 i	献	198
		四、有控模型时程计算 五、有控模型最终反应谱计算及设计 六、有控模型大震弹塑性时程分析 定 常见问题 一、建模 二、建模 三、计算及结果查看

第一章 消能减震基本概念

一、消能减震概念

消能减震设计指在房屋结构中设置消能器,通过位移相关型或速度相关型消能器提 供附加阻尼,消耗输入的地震能量,达到预期减震要求。

二、消能减震措施应用范围及减震效果综述

1.建筑结构设计中,小震作用下的地震力减震效果一般可达 5~30%,大震下结构层 间位移减震效果可达 30%左右。

2.适用范围广阔,几乎没有限制,适用于钢筋混凝土结构、钢结构、木结构等结构, 可以用在建筑、桥梁、构筑物中抗震、抗风等。

3.产品安装、施工难度小,工期影响小。

4.适用于新建建筑及建筑抗震加固。

三、常用消能减震装置介绍

消能减震装置主要可分为速度相关型、位移相关型,常见的形式如下图:

种类	黏滞阻尼器	黏滞阻尼墙	黏弾性阻尼器	金属屈服阻尼器	摩擦阻尼器
外 观					29%2 NEX/172
	F=Cv ^a	F=Cv ^a	$F=K(\omega)d+C(\omega)v$	F=K·f(d)	$F=K \cdot f(d)$
性 能	滞回曲线:椭圆 形、四边形。	滞回曲线:椭圆 形、四边形。	滞回曲线 : 倾斜 椭圆形。	滞回曲线:双线 性。	滞回曲线:双线 性。
	- man have	-ana the second		$-\frac{p_{sax}}{p_{s}}$ p_{sax} p_{sax}	$-\frac{\partial \max}{ } \int_{-\sigma_0}^{\sigma_0} d\max = \delta$
材料	黏滞流体	高分子化合物	丙烯、二烯 等化合物	钢材、铅	摩擦
原 理	挤压变形、流动 抵抗型	剪切变形、流动 抵抗型	剪切变形相关型	位移相关型	位移相关型
形状	筒型	墙型	筒型、墙型	筒型、墙型	筒型、墙型

1、位移相关型消能器

位移相关型消能器主要指金属屈服阻尼器、摩擦阻尼器。

位移相关型可以有效的增加结构阻尼比,同时增加结构刚度,因此加入位移相关型 消能器后结构的周期变短,阻尼比增加。消能器对于减小结构的总基底剪力效果有时侯 并不显著,但对于控制结构位移效果显著。

2、速度相关型消能器

速度相关型消能器主要指黏滞消能器、黏弹性消能器;粘滞消能器一般仅提供阻尼,

不提供刚度,通常有筒式黏滞流体消能器和粘滞阻尼墙等;粘弹性阻尼器同时提供阻尼 和刚度,由于其用的不够普遍,本手册暂时只介绍粘滞消能器的设计流程。

下面详细介绍几种常用的消能器。

3、屈曲约束支撑(BRB)

屈曲约束支撑,又称为防屈曲支撑,属位移相关型阻尼器,英文名字 BRB。

普通支撑可为框架或排架提供很大的抗侧刚度和承载力,但是受压会产生屈曲现象, 受压屈曲后,刚度和承载力急剧降低,因而其滞回消能性能很差。

防屈曲支撑内芯和约束部件构成,内芯是可屈服的部件,被置于一个钢套管内,套 管内灌注约束材料,并在内核单元与约束材料之间设置一层无粘结材料。约束部件的作 用为防止内芯在受压时发生整体屈曲并约束其局部屈曲,使内芯在拉力和压力作用下都 能达到全截面的充分屈服。防屈曲支撑通过钢材的轴向塑性变形消耗能量,属于金属屈 服消能器系列。

屈曲约束支撑的基本组成

一般而言,在结构小震设计时,屈曲约束支撑为小震弹性,消耗地震能量有限,不 能给结构附加太多阻尼比,不能有效降低地震作用,减震效果微小。

在中震和大震作用下具有良好的耗能能力,可以作为消能构件,增加结构阻尼。

屈曲约束支撑在多遇地震作用下处于弹性工作状态,能够给结构提供抗侧刚度和抗 扭刚度,一般设计控制 BRB 地震剪力占比为总剪力的 20%~30%左右;在设防烈度地震 甚至罕遇地震作用下,屈曲约束支撑的芯板进入屈服滞回耗能阶段,能够极大地耗散地 震能量,从而减小钢框架/砼框架的塑性变形,减小结构位移;强震后屈曲约束支撑检 查、更换方便,便于建筑在大震后的迅速修复使用。

屈曲约束支撑的轴向承载力直接由支撑芯板的材料和面积 A1 所决定,而其轴向刚 度则较繁杂,主要支撑由多段不等截面所连接而成,且受约束构件、连接板及节点域刚 度的影响,为了便于估算其刚度,引入等效截面积 Ae,将芯板等效为一根刚度与芯板 刚度相同的截面积为 Ae 等截面杆件,使单元的轴向刚度与屈曲约束支撑的轴向刚度相 等。A1 与 Ae 有一定的关系,一般由厂家试验确定。

屈曲约束支撑可采用下图的双线性恢复力模型:

屈曲约束支撑的双线性恢复力模型

图中:

Nby—屈曲约束支撑屈服承载力;

△y—屈曲约束支撑的屈服位移;

k—屈曲约束支撑的初始刚度,可按照 $k = \frac{EA_e}{l}$ 取值;

E—屈服钢材的弹性模量;

Ae—初始刚度对应的等效截面积;

1--支撑实际长度;

Q—芯板钢材的强化系数,可取为 2%~5%。

屈曲约束支撑也可采用 Wen 模型,其恢复力曲线如下图示:

屈曲约束支撑滞回曲线

中大	传统支	撑框架	屈曲约束支撑框架		
八心	主体结构	普通支撑	主体结构	屈曲约束支撑	
小震	弹性	弹性	弹性	弹性	
中震	弹性或塑性	弹性或屈曲	弹性	塑性 (耗能)	
大震	塑性	屈曲	弹性或塑性	塑性(耗能)	
中、大震后	拆除损坏部分,	影响建筑使用	检查屈曲约束支撑,更	换不影响建筑物使用	

|--|

实际工程图片如下图:

上海世博中心

上海东方体育中心游泳馆 防屈曲支撑长 13m

西安空港保税区

第三节详细解释用 YJK 进行屈曲约束支撑的设计过程。

4、筒式黏滞流体消能器

黏滞流体消能器属于速度相关型阻尼器。

一般由缸体、活塞和粘滞流体组成,活塞上开有小孔,并可以在充有粘滞流体的缸 体内作往复运行。当活塞与缸体间产生相对运动时,流体从活塞的小孔内通过,对两者 的相对运动产生阻尼,从而耗散能量。

从小位移到大位移都有效,对风振和地震都有效;抗疲劳、循环性能好,对于持续 时间长,循环次数多的地震十分有效,从动力学理论角度,粘滞阻尼器对脉冲型地震和 持续时间长的地震同样有效,也可满足高层风振舒适度要求。产品直径较大,连接杆件 较多,影响建筑使用功能。

黏滞流体消能器基于非线性 N-S 方程和计算流体力学原理,其阻尼力来自于结构内 部相互作用,包括:

1) 阻尼介质与活塞之间的相互作用;

2) 阻尼介质与缸体之间的相互作用;

3) 介质之间的相互作用;

4) 活塞杆与密封件之间的相互作用。

这种与活塞运动速度方向相反的力,称之为阻尼力。在阻尼器工作过程中,这些相 互作用过程实现了机械能转换为热能并耗散掉。

7

该消能器阻尼力-速度关系曲线如下图,其近似曲线采用被业界广泛采用的模型为 美国 Taylor 公司提出的 $F = CV^{\alpha}$ 本构模型。

速度相关型:F=C×V^α

其中 F 为阻尼力; C 为阻尼系数; V 为活塞运动速度; α为速度指数 当α<1 为非线性阻尼器,适用于抗震、抗风; α=1 为线性阻尼器,适用于 TMD(调谐质量阻尼器); α>1 为超线性阻尼器,适用于速度锁定装置。 在该模型下,其阻尼力和位移滞回曲线如下图:

粘滞阻尼器的滞回曲线

粘滞阻尼器采用的计算模型一般为 Maxwell 模型,YJK 中前处理连接属性中的"阻 尼器"即为这种计算模型。该模型是上述弹簧与阻尼器串联的模型,具体介绍详见后续 章节。

Maxwell 模型

现场的照片有:

5、黏滞阻尼墙(VFW)

粘滞阻尼墙是近年来开始广泛使用的一种新型速度型阻尼器。

粘滞阻尼墙构成及工作原理

由内钢板,外钢板和之间的粘滞液体(烃类高分子聚合物)所组成。在结构上内钢板 固定在上层楼面(梁或者梁下墙),两块外板固定在下层楼板(梁或者梁上墙)。当结 构受到地震或风作用时,上下楼面的运动速度不同,导致内钢板和外钢板产生相对速度。 内外钢板之间的速度梯度使得其之间的粘滞材料产生剪切变形而产生粘滞阻尼力,从而 使得结构的阻尼增大,降低结构的动力反应。

其具有以下特点:

1)制作、安装方便,不需要复杂的装置和特殊的材料;设置在建筑物的墙体位置,安装 后不影响建筑使用功能及美观

2)通过改变粘滞液体的黏度、内外钢板之间的距离和钢板面积,可以调整阻尼墙的阻 尼力;

3)由于墙体与粘滞材料的作用面积较大,故可吸收较多的地震能量;

4)可同时适用于多层、高层建筑结构的抗震和抗风设计,还能用于抗震加固和震后修 复等方面。

和黏滞流体消能器一样,粘滞阻尼墙阻尼力本构采用 $F = CV^{\alpha}$ 模型,力学计算模型采用 maxwell 模型。

现场图片有:

第二章 YJK 减震设计计算要点

一、消能部件的建立

在 YJK 中模拟消能减震构件的方式一般可为斜撑(再将斜撑定义连接单元)、两点 约束、单点约束等形式,比较灵活多样。但最直观也最常用的布置方式是建模时消能器 构件用斜撑建立,后在前处理将斜撑定义成连接单元属性。

前处理中特殊支撑、两点约束、单点约束中都提供了相应连接单元的设置。其中塑 性单元(Wen)、屈曲约束支撑是位移型消能器单元,阻尼器是用来模拟速度型阻尼器 的,具体的解释在以后章节细述。

(型)	塑性单元	(Wen)			御定义 [无相关定	× •
	线性 屈曲约束3 阴尼器	支撑		冈腹 (k:T/m)	屈服力 (tell)	屈服后 刚度比	屈服指数
] V1	塑性单元	(Wen)		0	0	0	0
] V2	間隙		12.1	32 <mark>5000</mark>	650	0.1	10
] V3	184720	0		0	0	0	0
R1	1e+011	0		0	0	0	0
R2	1e+011	0		0	0	0	0
RЗ	1.1e+012	0		0	0	0	0

对于整体模型 X、Y 向布置消能构件不同的情况,或者只有某个方向布置消能器, 而另一个方向未布置的情况,请按实际情况建模,程序可以准确计算,当按能量法计算 得到的结构阻尼比 X、Y 向也将不同。

1、杆件式阻尼器--斜撑建模方式

建模时将减震构件按斜撑构件建立,截面可按真实面积设定(对于屈曲约束支撑等 位移型阻尼器宜用其提供强度的芯材截面积),材料类别一般设置为 5(钢材)即可, 因为在前处理将会把他们定义成阻尼器、WEN 单元或其他连接单元,此连接单元会自 动替换建模时的斜撑构件。当为屈曲约束支撑时,程序还会自动进行强度验算,此时采 用的截面即为建模时的斜撑截面,为了和实际强度验算相符,这里建模建议用 BRB 的 芯材截面。

13

如下图所示的各杆件类阻尼器:

用斜撑模拟的各种阻尼器(a)

用斜撑模拟的各种阻尼器(b)

用斜撑模拟的各类阻尼器(c)

用斜撑模拟的各类阻尼器(d)

用斜撑模拟的金属剪切阻尼器

用斜撑模拟的屈曲约束支撑

2、墙间金属剪切型阻尼器-斜撑或两点约束建模

这种剪切型阻尼器安装在每层墙的中间部位,YJK 不能在同一直线上布置两道直墙, 但可在同一直线上同时布置斜墙和直墙。此时可以对下段墙按直墙输入,但墙上左右节 点高度输入墙在层中间的高度,上段墙按斜墙输入(其上下偏心相通,所以实际仍是直 墙),其底标高输入缝隙上的高度。布置完墙体后,在中间缝隙的上下节点间布置斜杆, 并在计算前处理的特殊支撑菜单下把斜杆设置为剪切型阻尼器。

斜撑模拟金属剪切阻尼器

连接单元	七修改						×
类型:	塑性单元	(Wen)	•	〕 送		无相关定	× •
	有效刚度 (kdM/m)	有效阻尼 (ktN. s/m)	非线性	刚度 (keN/m)	屈服力 (LeN)	屈服后 刚度比	屈服指数
🔽 V1	2.7e+010	0		0	0	0	0
🔽 U2	184720	0	V	325000	650	0.1	10
🔽 ນ3	184720	0		0	0	0	0
📝 R1	1e+011	0		0	0	0	0
📝 R2	1e+011	0		0	0	0	0
🔽 R3	1.1e+012	0		0	0	0	0
		确定	È)	E.	消		

斜撑模拟金属剪切阻尼器

图中例题 U2 为剪切方向,R3 为斜杆平面内弯矩方向,R3 宜设置为一个较大的刚 度值。位移动画,如下图:

📲 🗅 🖻 🖻 🌣 🏳 🖨 🖨 👷 🛛 👘 🖬 🖬	建科建筑结构计算模块--YJK-A	【1.7.0.0] - [D:\用户工	程/隔震減震模型/带悬臂有连接((剪切型阻尼器建模问题)\带悬臂有连接]	↓ 2 0 ☆ 🗉 – ♂×
	81至分析 桂坂及谷香振动 【 【 1 🏎 梁M 👖 桂顶				
文本结果 构件 戰節简图 → 剪跨比 ▼ 柱中切 → 備拉	设计 🔤 梁V 🔓 桂鹿	三维 三维 内力 配筋 口 煎力		CR 吊车等值线标准层设置 文本 送下	南 唐 第1层(标准层1) ▼
文本结果 编号 设计结果	工具 标准内力	三維显示 梁内力包络	变形图	预组合内力等值线 钢筋层 设置 工程对比 其正	ż
					男示方式 ● 位移科達、● 位移动画 公園 秋季之 ● 位移动画 ● ● 法者 工 兄 ● 200週 二 ● 2010 二 ● 2010 二 ● 2010 二 ● 2010 二 ● 2011 二 ● 2012 二 ● 2013 二 ● 2014 二 ● 2015 二 ● 2016 二 ● 2017 二 ● 2018 二
命令完成 初始化数据完成: 命令:yjkdisplay_dspdrawmenu10 合本。		50 📆 📐			<u> </u>
10107-99550	· 🔤 •		•		(6)
				ск 📚 🕲 🐔 🔺	Na 🔏 🎽 🗂 🍕 🕪 16:26 2016/1/21

当上下墙体用支撑来代替时,可分别布置上支撑模拟上段墙、下支撑模拟下段墙, 并在上下两斜杆的缝隙处设置两点约束,如下图:

两点约束模拟-钢板软钢阻尼器

此外连梁消能器等均可以模拟。

对于粘滞阻尼墙(VFW)当其上下两端都连着墙时,其建模方式和上面的墙间剪切 型阻尼器类似,只是墙间斜杆的连接属性要和粘滞阻尼器一样改成阻尼器 maxwell 模 型;当 VFW 上下端直接和上下楼层的梁相连时,直接建一根斜杆,然后定义阻尼器 maxwell 连接属性。

二、消能构件的非线性属性

减震器构件可以给结构提供刚度和阻尼,但是有效刚度和有效阻尼的确定一直以来 是一个难点,原因是相同规格的减震器,在同一结构中可能提供不同的刚度和阻尼,因 为减震器的有效刚度和有效阻尼与地震波,地震方向,地震波峰值加速度,安装位置, 局部方向(U1, U2, U3)均相关。

1、减震器在小震、中震和大震下不同的有效刚度和阻尼

例如对于屈曲约束支撑而言,它在小震下接近弹性,在中震和大震下会有较多的吸 能减震的作用,所以其在小震、中震、大震下的有效刚度和有效阻尼均不一致。我们以 下图的简单框架模型为例,在 X 方向加入人工地震波,观察结构底层布置在 X 方向的某 一根屈曲约束支撑(位置如下图所示)在 18cm/s², 70cm/s², 400cm/s² 地震峰值加速度下 YJK 分别计算出的有效刚度和有效阻尼。

屈曲约束支撑定义参数如下图:

类型:	屈曲约束	支撑	•) ž	地取定义 🛛	无相关定	× •
	有效刚度 (ktN/m)	有效阻尼 (bdN.s/m)	非线性	刚度 (kcN/m)	屈服力 (LaN)	屈服后 刚度比	屈服指数
🔽 V1	10000	0		15000	50	0.077	2
🔲 V2	0	0		0	0	0	0
🕅 V3	0	0		0	0	0	0

以下为不同峰值加速度下该 BRB 的滞回曲线和有效刚度,有效阻尼的计算结果。

18cm/s²峰值加速度下的滞回曲线

	衣 I. 个问咩追加迷度下的有效刚度和有效阻比							
	峰值加速度(cm/s ²)	有效刚度(kN/m)	有效阻尼(kN*s/m)					
18		14986.62	2.29					
	70	70 14772.42						
	400 8983.42		374.26					

回返估加速度工的专动刚度和专动四日

从表1中的计算结果可以看出,按照盈建科软件的计算方式,可以考虑到减震器有 效刚度和有效阻尼随 BRB 最大变形的变化。在 18cm/s² 峰值加速度下,BRB 接近弹性 状态,其有效刚度接近 BRB 初始刚度(初始刚度为 15000 kN/m),有效阻尼也几乎是 0。而随着地震峰值加速度的增大,有效刚度减小,有效阻尼增加。

2、减震器在不同安装位置和局部方向的不同的有效刚度和阻尼

为体现同一类型的减震器在结构不同位置处所起到的减震作用不同,对比如下图所 示底层(下)和顶层(上)的屈曲约束支撑在 400cm/s²的滞回曲线和有效刚度、有效阻 尼的计算结果。

20

峰值加速度(cm/s ²)	有效刚度(kN/m)	有效阻尼(kN*s/m)
400(上部)	13553.65	83.74
400(下部)	8983.42	374.26

从结果中可以看出,尽管顶层与底层的屈曲约束支撑力学参数一致,但处于顶层的 屈曲约束支撑在地震作用下,两端变形较小,导致滞回曲线滞回圈较小,从而相应的耗 能也较小。

三、直接积分法时程分析计算减震器的有效刚度和阻尼

减震器厂家提供的参数是减震器的非线性参数,由于这些参数不能直接得出减震器 提供给结构的有效刚度和阻尼。在反应谱法计算带有减震的结构时,由于减震器的这种 非线性属性,对同一规格的减震器不能采用同样的有效刚度和阻尼。

盈建科软件采用直接积分法,对结构进行时程分析,而后针对每根减震器构件的位 移时程曲线,速度时程曲线,内力时程曲线,滞回曲线等计算结果,自动为每个构件的 每个方向计算有效刚度和有效阻尼。

1、弹性时程中采用直接积分法计算减震器的有效刚度和阻尼

对于设有减震器的结构模型,用户可进入弹性时程模块,工况定义中选择直接积分 法,地震波建议采用与规范谱拟合较好的波(可选多条,程序自动对结果平均),在工况 组合中设置主方向峰值加速度,次方向和竖方向峰值加速度设置为0,进行时程计算后 即可得到每个减震器的等效刚度和阻尼系数。

地震作用		
地震波 ArtWave	-RH1TG045,Tg(0.45))`
主方向与X轴正向	夹角(度) 0	
时程分析		
分析方法		
○振型叠加法	● 直接积分》	去
記始时间(s) 0	结束	时间(s) 30.02
时间先长(s) 0.	01 输出间	北京先教 1
約月辺にのの		24/24/24 (24:45)
	01	达14全时参数…
HHT积分参数		-
a [0	β 0.25	γ 0.5
瑞利阻尼		
	振型A	振型B
周期:	0.760026	0.233
阻尼比:	0.05	0.05
☑质重系数alfa	3	0.632731
☑刚度系数bei	ta	0.002838

号	恒载系数	活载系数	峰值加速度类型	主方向峰值加速度(cm/s2)	次方向峰值加速度(cm/s2)	竖方向峰值加速度(cm/s2
1	0.00	0.00	PGA	70.00	0.00	0.00

2、计算公式

(1) 有效刚度的计算

$$k_{\text{eff}} = \frac{\int_0^t Fd(\Delta u)}{\int_0^t \Delta u d(\Delta u)}$$

式中 F 和 Δu 分别为 t 时刻减震器内力与相对变形, k_{eff} 为有效刚度。另外软件同时 提供"割线刚度"

(2) 有效阻尼的计算

计算减震器的有效阻尼前,先要计算全程的内能 E_{in}(也即滞回曲线与坐标轴所围的面积)、构件最终的弹性应变能 E_{elas}。式中 k_{initial} 是减震器的弹性刚度,F_{fn} 是减震器 最终时刻的受力。

$$E_{in} = \int_0^t Fd(\Delta u)$$
$$E_{elas} = \frac{1}{2} \frac{F_{fin}^2}{k_{initial}}$$

此时根据阻尼耗能的公式,式中 c 为阻尼系数,ceff为有效阻尼。

$$E_{in} - E_{elas} = \int_{0}^{t} cv du = \int_{0}^{t} cv^{2} dt = c_{eff} \int_{0}^{t} v^{2} dt$$
$$c_{eff} = \frac{E_{in} - E_{elas}}{\int_{0}^{t} v^{2} dt} = \frac{\int_{0}^{t} Fd(\Delta u) - \frac{1}{2} \frac{F_{fin}^{2}}{k_{initial}}}{\int_{0}^{t} v^{2} dt}$$

3、减震器等效参数计算选项

关于直接积分法计算减震器的等效参数,程序在"计算与输出参数"中的减震器等

	选择	输出参数
	前处理	
与輸出参数		
减震器等效	参数计算选项	节点与能量时程输出选现
同時度期	阻尼器有效刚度置为0	☑是否输出节点时程
□歴度望		
	阻尼器采用割线刚度	☑是否输出能重时程

效参数中计算选项中给出了一些选项,见下图:

速度型阻尼器有效刚度置为 0:对于速度型阻尼器,工程上通常认为其等效刚度为 0,但是软件按能量方式等效出的有效刚度并不为 0,因此当用户希望将其置为 0 时, 可选择该选项;

位移型阻尼器采用割线刚度:软件内部默认采用能量等效方式计算减震器等效刚度, 当用户希望采用割线刚度计算等效刚度时,可选择该选项;

等效参数取多条波的平均值:当用户定义了多条波多个工况计算时,软件对于等效 参数的确定遵循下列规则:

当用户不选择该选项时:对每一个非线性构件,程序遍历每个工况,取该构件内能 最大的工况,根据该工况下的滞回曲线计算该构件的有效刚度和有效阻尼,将其作为该 构件的有效刚度和有效阻尼系数结果进行输出。

当用户选择该选项时:程序对每个工况分别计算一次等效参数,对 X 向布置的减震器,取所有 0 度工况的平均值,对 Y 向布置的减震器,取所有 90 度工况的平均值,对 于斜向布置的减震器,取与此减震器布置方向夹角小于等于 45 度的所有工况的平均值。

四、反应谱法整体计算中使用自动计算的有效刚度和阻尼

对于减震结构,一般采用反应谱法进行最终的设计计算,YJK 可在反应谱法地震计 算时,自动读入前面直接积分法时程计算出的每根减震构件不同的有效刚度和阻尼。

24

在 "上部结构计算---前处理及计算"模块中,点击"计算参数---地震信息-隔震减 震",在 "减隔震元件有效刚度和有效阻尼"中选择"自动采用弹性时程计算结果", 软件会自动使用直接积分法时程中计算得到的有效刚度有效阻尼进行整体结构计算,这 种情况下,用户在减震构件参数中输入的有效刚度和阻尼将不再起作用。

如果未进行"直接积分法时程中计算有效刚度和阻尼"步骤,软件依旧采用用户输 入的有效刚度和有效阻尼进行计算。

对于这种读入直接积分法时程结果的有效刚度和阻尼,用户可在计算结果的"构件 编号"菜单下查看。

计算完毕后,可以点击"设计结果---构件编号---减震器参数---应用"看到每根减震 器有效刚度和有效阻尼的结果,如图所示。

五、减震器附加给结构的有效刚度和阻尼的其他计算方法

除了前述反应谱计算读取弹性时程计算的等效刚度和阻尼系数的方法之外,软件还 提供了另外两种减震器等效参数的确定方法:弹性时程直接计算附加阻尼比的方法、按 照消能减震规程 6.3.3 条的反应谱迭代方法,下面进行分述。

1、采用弹性时程结果直接计算附加阻尼比

(1) 计算原理

利用弹性时程的阻尼器出力、阻尼器相对变形、层剪力、层间位移结果直接按照消 能减震规程 6.3.2 的公式计算阻尼器耗能和结构总应变能,并进而求得减震结构的附加 阻尼比;将此附加阻尼比与主体结构阻尼比叠加,作为最终的结构阻尼比进行振型分解 反应谱计算。此种方式将减震器的阻尼贡献以附加阻尼比的形式体现。

计算过程如下:

1) 按照消能减震规程 6.3.2-2 计算结构总应变能

$$W_s = \sum F_i u_i / 2$$

Fi 采用弹性时程工况计算的各楼层的楼层剪力,ui 采用每个楼层的最大层间位移

2) 按照 6.3.2-4~5 计算各个阻尼器耗能

按式 6.3.2-4 计算速度型阻尼器的耗能:

 $W_{cj} = \lambda_1 F_{dj \max} \Delta u_j$

 F_{djmax} 取每个阻尼器的最大出力, Δu_j 取每个阻尼器的最大相对变形

按式 6.3.2-5 计算位移型阻尼器的耗能:

对于 BRB 以及金属屈服型阻尼器,均采用 WEN 单元模拟,阻尼器耗能即为阻 尼器最大相对变形对应的点所形成的平行四边形的面积;

3) 按照式 6.3.2-1 计算阻尼器附加给结构的有效阻尼比

$$\zeta_d = \sum_{j=1}^n W_{cj} / 4\pi W_s$$

附加阻尼比结果文本中输出计算过程如下:

		减震结构	附加阻尼比计算报告			
思据《建筑消能》	臧震技术规程》 TGT 297-	-2013 中第6.3.2条计算	8			
工况1: ArtWay	/e-RH1TG045, Tg(0.45) [0.0]+[COMB1]+[M]				
层-塔号 1-1	主方向楼层剪力 2960.717	主方向层间位移 0.005	主方向应变能 7.404	次方向楼层剪力 504.396	次方向层间位移 0.002	次方向应变能 0.4
2-1	2647.189	0.005	6.510	483.754	0.002	0.4
3-1	1884.534	0.004	3.552	331.093	0.002	0.2
4-1	1126.782	0.002	1.262	186.298	0.001	0.0
全楼层总应变能	É: 19.962 (Kn∗m)					
速度型阻尼器 阻尼器编号	与耗能量(Kn*m) 耗能 1 610					
2	2 006					
3	2,000					
у у	1 610					
5	0.120					
6	0.120					
7	0.156					
0	0.000					
0	1 700					
10	2 079					
11	1 700					
12	2 077					
13	0 159					
14	0.135					
15	0.083					
10	0.003					
17	1 387					
18	1.301					
19	0.053					
20	0.058					
21	0.527					
22	0.522					
23	0.017					
24	0.019					
東度型阻尼哭⊂	A.耗能・19.849(Kn*m)				
回,2011年1月1日 1月1日 1月1日 1月1日 1月1日 1月1日 1月1日 1月	5: 19 849 (Kn#m)					
ᇻᇩᇔᇒᄣᆽᆘ ᇂᆂᇃᇎᄢᆃᇔ	5. 10.040 (MITM)					
«для гралира	1/5/6. (.91%					

工程上常采用 7 条波分别进行两个方向共 14 个工况的时程计算,得到每条波在两 个方向的附加阻尼比,然后 X 向取 7 条波 0 度工况的平均值作为 X 向的附加阻尼比,Y 向取 7 条波 90 度工况的平均值作为 Y 向的附加阻尼比,最后取两者小值作为最终的附 加阻尼比。

在附加阻尼比结果文本最后按角度给出附加阻尼比的平均值,如下:

各工况附加阻尼比平均值统计
全部0.0度地震波工况的附加阻尼比平均值:8.16%
全部90.0度地震波工况的附加阻尼比平均值: 7.09%

(2) 附加阻尼比应用

对于速度型阻尼器,直接将此附加阻尼比与主体结构阻尼比叠加,作为最终的结构 阻尼比填入下图所示位置,如主体结构阻尼比为 5%,附加阻尼比为 4%,则填入 9%即 可;然后在阻尼器定义时将有效刚度和有效阻尼均填为 0,并在减隔震元件的有效刚度 和有效阻尼中选择采用输入的等效线性属性,进行振型分解反应谱计算即可。

吉构总体信息 十 算控制信息 控制信息			结构阻尼比(%) ④ 全楼统一			9
利度系数	□投新区划图计算	0 (0 0)	○按材料区分		钢	2
分析求解参数		8 (U.2g) V	型钢混凝土	5		± 5
荷载信息 ^{其木轰粉}	场地突别		偶然偏心			
震信息	特征周期	0.45	□考虑偶然偏心 X	0.05	¥	0.05
地震信息 白空ツ駆响を粉曲线	周期折减系数	0.8	- 偶然偏心计算方法:			
时域显式随机模拟法	特征值分析参数		●等效扭矩法(传	统法)		
地震作用放大系数	分析类型	wyd-ritz \sim	○瑞利─里兹投影	反射谱法	(新算法	토)
性能设计 性能包络设计	○用户定义振型数	9	□考虑双向地震作用			
隔震減震 江台自	●程序自动确定振型数			+ cocieta	h垂作田	
F 信息 荷载信息	质重参与系数之和(%)	90	————————————————————————————————————	で (0_00) (0_00)	בת או שאני 	
件设计信息	□ 最多振型数量	150	斜交抗侧力构件万同角度(0-90)			
构件设计信息 钢构件设计信息	按主振型确定地需内力符号		活荷载重力荷载代表值组合系数 0.5			J. 5
络设计	心振加拾毒竿机		地震影响系数最大值		0	D. 16
科信息 材料参数	虹旭木机辰寺家	- <u>-</u>	用于12层以下规则砼框 验質的地震影响系数器	架结构薄 大值	弱层(D. 9
钢筋强度		二级 ~	坚向地震作用系数库线	宿	(D. 1
下室信息 #944	钢框架抗震等级	二级 ~		正安的经	物后留	For the second sec
转组 合 组合系数	抗震构造措施的抗震等级		口地展时基时不与愿地	小王口讷	1191以里	
组合表	□提高一级 □降(低一级				
目定义上况组合 空加周	□ 框支剪力遗结构底部加强	区剪力墙抗震等				
配式		锚的拾雪等纲家				
	□ □ 层降低发抗震措施凸级"	100H JD 078 + 7 - 7 X 192				
	局部模型反应谱法计算竖	向地震时				
	一方版水平顷里					
	は美設会で共同した					
	地震影响系数载大值 : 地雷影响系数最大值中"沿防	·利度" 参粉协制。	旋件全相推续差粉的变化的	ㅋᆕ┾┲┱╺┷╔┥	お売見勿め	反物是士
	值。如果要讲行中需弹性或不	屈服设计,设计人	员需要将"地震影响系数最	品大値"目	8辰京201 月 工 修改	9余数取八 5为设防列
	唐山市日から方北日 した					

	* ±								
		╕双例腹胚 N/m, kN. m/r	有效阻尼 adCE(kN.s/m	非线性	M度 K(kN/m)	阻尼 C(kN.s/m)	阻尼指数 exp		
	₩ U1	0	0] 🛛	80000	400	0.2		
	U2	0	0		0	0	0		
	🗌 V3	0	0		0	0	0		
	R1	0	0		0	0	0		
	R 2	0	0		0	0	0		
	□ R3	0	0		0	0	0		
俞入-地震信息 > 『	同震减震								
息	地震信息	> 隔震減震 -			4	向终迟计			
	隔震	凹视辰				03日以19 大震计算模型。		不屈眠	2前小
	隔震层	数		0		大震地震影响)	系数最大值	ч учали	0.9
	隔震层	/层号				周期折减系数	1	特征周期	0.3
	隔震结 一分部设	,构设计万法 ,计法		分部设	计 ~	不屈服	(10)		
±±₽	调整后	冰平向减震系	数(β/ψ)	1		● 全楼统-	,(%) _		5
拟法	一计算	和震非隔震	莫型			○ 按材料□	区分	钢	2
AR\$X	- 減震 - 減煙结	构设计方法	合地	山小西注	~	型钢砼	5	混凝土	5
	一云南藏	震规程	D00	1979 - June / La	· ·	连梁刚度折	i 减系数		1
		-类抗震设防日	目标			中梁刚度放	【 大系数 句地雲作田		1.5
	减隔震			0.25		弹性	1,0,00,001,001		
	· · · · · · · · · · · · · · · · · · ·	加阻尼比 尼比折减系数	ι	1	-	结构阻尼比	(%)		5
1	阿加阳					◎ 主後統一	20 A.	to .	2
3	时7加阻 考虑	钢筋超强系数	t			○ 按材料[5	⊠∽分	1D4	
3	附加阻考虑反应谱计	钢筋超强系数 - 算方法	1			 · 按材料[] · 型钢砼 	≤分 5	™ 混凝土	5
	附加阻 ● 考虑 反应谱计 ● 实振 ■ 式電	钢筋超强系数 -算方法 型分解反应谱) 法			○ 按材料[型钢砼	区分 5 「成系数	钢 混凝土	5
	 附加阻 考虑 反应谱计 ●实振 页复振 	納筋超强系数 -算方法 -型分解反应谱 隔震附加阻尼 型分解反应谱	》 法 (比算法 法	能重法	~	 按材料[型钢砼 道梁刚度折 中梁刚度放 	区分 5 河域系数 1大系数	钢 混凝土	5 1 1.5
1	附加阻 ● 考虑 反应谱计 ● 实振 减震 の 复振 减隔震力	钢筋超强系数 -算方法 型分解反应谱 隔震附加阻尼 型分解反应谱 :件有效刚度和) 法)比算法)法 · 可效阻尼	能重法	~	 ○ 按材料[] 型钢砼 连梁刚度折 中梁刚度訪 □ 考虑双向 	区分 5 減系数 で大系数 向地震作用	钢 混凝土	5 1 1.5
a.	附加阻 一 考 讲 反应 谱 计 ⑥ 实 振 震 振 [⑧ 采 用	納防超强系数 算方法 型分解反应谱 隔震附加阻尼 型分解反应谱 <u>件有效刚度和</u> 輸入的等效3	1 注 注 注 注 1 有效阻尼 1 性属性	能量法	~	 ○ 按材料[] 型钢砼 连梁刚度抗 中梁刚度前 一考虑双向 	区分 5 1 減系数 1 大系数 同地震作用	钢 混凝土	5 1 1.5
8 計信息 1:4 記 4:4 合	附加阻 参虑 反应谱讲 ●实减震 。复 意示 服 。 天 所 (● 、 天 氏 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、	納筋超强系数 算方法 型分解反应谱 隔震附加阻尼 型分解反应谱 <u>件有效刚度和</u> 输入的等效约 确定	t 比算法 法 <u>中有效阻尼</u> 性属性	能重法	~	 ○ 按材料回型钢砼 型钢砼 這梁刚度前 中梁刚度前 ○ 考虑次府 	区分 5 i减系数 i 大系数 句地震作用	19 混凝土	5

对于位移型阻尼器,除了将附加阻尼比与主体结构阻尼比叠加作为最终的结构阻尼 比填入之外,尚需考虑有效刚度的来源,此时,分为两种情况:

- 小震计算:因为位移型阻尼器在小震下均保持弹性,故可直接在阻尼器定义中, 将有效刚度设置为初始弹性刚度,因为阻尼器无耗能,有效阻尼填为0,也不 需要考虑附加阻尼比,减隔震元件有效刚度和有效阻尼中选择采用输入的等效 线性属性,进行振型分解反应谱计算即可,计算完毕校核阻尼器的应力比。
- 2) 中震计算:阻尼器中震下进入屈服耗能,存在等效刚度确定问题,减隔震元件 有效刚度和有效阻尼可选择自动采用弹性时程计算结果,附加阻尼已在附加阻 尼比中考虑,为避免重复考虑,需将下图中附加阻尼比折减系数置为0。

信息		包络设计	
言忌 兵数	隔震 原表层数 0	大震计算模型 不屈服	弹性
↓ 应 金融新新		大震地震影响系数最大值	0.9
	MR辰居居ち 昭春井板沢江 六注	周期折减系数 1 特征周期	0.3
き数 見	随最结构设计力运 分部设计 分部设计 分部设计 分部设计法	不屈服	
。 息 但你在东北中华		结构阻尼比(%)	5
〈意响系釵曲线 昆式随机模拟法	计智由型非隔型描刊		2
F用放大系数 Sit	减震	型钢砼 5 混凝土	5
26日 29络设计	减震结构设计方法 导则中震法 🗸	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1
成震 見	云南減震规程	山梁刚度站大 毛勒	1 -
息	用一类机震设防目标	一考虑双向地震作用	1.0
T肩足 计信息		弹性	
⊧设计信息 ╋	财人的加阻尼比折减系数 0	结构阻尼比(%)	E
			0
	反应谱计算方法		2
	●实振型分解反应谱法	型钢锭 5 混凝土	5
[减震隔震附加阻尼比算法 能量法 🗸	连梁刚度折减系数	1
口细合	○ 复振型分解反应谱法	中梁刚度放大系数	1.5
are a da fara e	城隔震元件有效刚度和有效阻尼 〇 采用输入的等效线性属性 〇 迭代确定 ④ 自动采用弹性时程计算结果	□芍はXX回心病1F用	
2、消能减震规程 6.3.3 条的反应谱迭代

《建筑消能减震技术规程》6.3.3 条给出了附加阻尼比迭代方式的振型分解反应谱 法,通过在"减隔震元件有效刚度和有效阻尼"选择迭代确定,并且在减震隔震附加阻 尼比算法中选择能量法,可以在程序中实现这种减震结构计算方法。

 控制信息 利原系数 小效应 分析求解参数 风荷载信息 馬震告約设计方法 分部设计 基本参数 局震结构设计方法 分部设计 加聚信息 自定义影响系数曲线 计算中震非隔震模型 小型雨砼 5 混凝土 连梁利度折减系数 方点 空振型分解反应谱法 高定、工況组合 鉴定加固 集配式 人震光、電気、 人震光、電気、 人震光、電気、 人震光、電気、 人震光、電気、 人震光、電気、 人震光、電気、 人震光、 人間、 人			包络设计			构总体信息 算控制信息
前效应 ○ <th>弹性</th> <th>不屈服</th> <th>大震计算模型</th> <th></th> <th>隔震</th> <th>控制信息 网度系数</th>	弹性	不屈服	大震计算模型		隔震	控制信息 网度系数
分前采用参数 通牒是层考 周期折减系数 1 特征周期 基本参数 地震信息 分部设计法 分部设计 地震信息 词整后水平向减震系数(阝/Ψ) 1 自定义影响系数曲线 计算中震非隔震模型 市域空水中向减震系数(阝/Ψ) 1 自定义影响系数曲线 计算中震非隔震模型 市域空水中向减震系数(阝/Ψ) 1 市域市 市業市高震 「日息 物件设计信息 <t< td=""><td>0.9</td><td>值</td><td>大震地震影响系数最大的</td><td>U</td><td>協震层数</td><td>二阶效应</td></t<>	0.9	值	大震地震影响系数最大的	U	協震层数	二阶效应
● 分部设计法 ● 方面文市 地震信息 ● 分部设计法 自定义影响系数曲线 ● 计算中震非隔震模型 小球局式随机模拟法 ● 计算中震非隔震模型 地震作用放大系数 ● 计算中震非隔震模型 球震 「 前 中震非隔震模型 球震 「 前 中震非隔震機型 球震振震震 ○ 空 横 第 窗子教信息 一 大抗震诊防目标 海牛设计信息 一 第 一 失抗震诊防目标 内件设计信息 - 素虑钢筋超强系数 内件设计信息 - 素虑钢筋超强系数 内件设计信息 - 素虑钢筋超强系数 内科 自息 - 素虑钢筋超强系数 方方法 - 三 多皮衍和 回尼比 折球系数 - 三 「 方方法 - 三 ○ 安振型分解反应谱法 - 三 海底高震前筋超强系数 - 三 「 方法 - 三 ○ 安振型分解反应谱法 - 三 - 算振型分解反应谱法 - 三 - 電影之外的度加大系数 - 三 - 算振型分解反应谱法 - 三 - 電影力和反応 - 三 - 算振型分解反应谱法 - 三 - 電振 力 - 二 - 電影型分解反	0.3	特征周期	周期折减系数 1	分部设计	隔震结构设计方法	分切水解奓剑 荷载信息 其本参数
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			- 结构阻尼比(%)	73 HP 52 PT	分部设计法	
1 1 1 1 2 2 2 2 2 3 2 3 2 3 3 2 3	5		 全楼统一 	(β/ψ) 1	调整后水平向减震系数(6	地震信息 自定义影响系数曲线
地震作用加入未熟 減震 型钢砼 5 混凝土 性能设计 減震減震 減震結构设计方法 抗规小震法 注梁刚度折减系数 場構設計 第一类抗震设防目标 注梁刚度折减系数 内件设计信息 第一类抗震设防目标 内件设计信息 第一类抗震设防目标 内件设计信息 内体设计信息 内体设计信息 内体设计信息 内体设计信息 内体设计信息 内核的超足 方法钢筋影響 方法钢筋影響 内筋筋器 方法钢筋影響 資源 方法钢筋影響 資源 <td>2</td> <td>钢</td> <td>○ 按材料区分</td> <td>1</td> <td>计算中震非隔震模型</td> <td>时域显式随机模拟法</td>	2	钢	○ 按材料区分	1	计算中震非隔震模型	时域显式随机模拟法
性能包络设计 減震結約按计方法 抗规小震法 注梁別度折减系数 第一类抗震设防目标 第一类抗震波震流 第一类抗震波震流 第一类抗震波器 第一类抗震波器 第一类抗震波器 第一类抗震波器 第一类抗震波器 第一类抗震波器 第二 第 第	5	混凝土	型钢砼 5		減震	也最作用放入系数性能设计
▲ H 4 M RE 2014 ± 中梁阴度放大系数 「第一类抗震设防目标 「第一类抗震设防目标 海件设计信息	1		连梁刚度折减系数	抗规小震法 ~	減震结构设计方法 二面式雪切程	性能包络设计 隔雪减雪
古何载信息 本城福震 ▲大附加阻尼比 ● 考虑双向地震作用 胸柏件设计信息 最大附加阻尼比 ●.25 弹性 約4件设计信息 最大附加阻尼比 ●.25 弹性 均构件设计信息 動大附加阻尼比/折减系数 1 ● 全磁统一 材料答款 1 ● 全磁统一 ● 技材料区分 級 均筋强度 反应谱计算方法 ● ● ● 2 ● ● 2 ●	1.5		中梁刚度放大系数	Ā	五用·柳辰观性 第一类抗震设防目标	计信息
物件设计信息 動大附加阻尼比 0.25 御物件设计信息 動大附加阻尼比 0.25 即物加阻尼比折减系数 1 自名 考虑钢筋超强系数 材料卷数 高大附加阻尼比 前筋强度 麦虑钢筋超强系数 地下室信息 ● 文振型分解反应谱法 前载组合 34%用度 自定义工况组合 夏振型分解反应谱法 遊客加固 夏振型分解反应谱法 遊客加固 夏振型分解反应谱法 歐大能确定 ● 全楼统一 ● 全楼统一 技材料区分 钢 型钢砼 5 混凝土 · 支振型分解反应谱法 能里法 · 支振型分解反应谱法 - · 支流和目 -		用	□ 考虑双向地震作用			何载信息 件设计信息
回络设计 附加阻尼比折减系数 1 ○ 全楼统一 材料参数 考虑钢筋超强系数 1 ○ 全楼统一 材料参数 方法 ○ 全楼统一 技材料区分 均筋强度 反应谱计算方法 ○ 安振型分解反应谱法 運納砼 5 混凝土 ゆ下室信息 ● 实振型分解反应谱法 減震隔震附加阻尼比算法 正 ○ 全楼统一 ○ 技材料区分 初 增合系数 组合系数 ● 支振型分解反应谱法 ① 運納砼 5 混凝土 自定义工况组合 ● 复振型分解反应谱法 正 连梁刚度折减系数 中梁刚度放大系数 電器電式 ● 复振型分解反应谱法 ● 全楼统一			弹性 结构阻尼比(%)	0.25	最大附加阻尼比	构件设计信息 钢构件设计信息
新村將参救 一考虑钢筋超强系数 ● 技材料区分 钢防强度 地下室信息 反应谱计算方法 型钢砼 5 混凝土 地下室信息 ● 实振型分解反应谱法 減震隔震附加阻尼比算法 道梁刚度折减系数 道梁刚度折减系数 组合表 ● 复振型分解反应谱法 能量法 道梁刚度折减系数 自定义工况组合 ● 复振型分解反应谱法 能量法 ● 繁定加固 ● 复振型分解反应谱法 ● 電線 ● 支援國式 ● 支代确定 ● ●	5		 全楼统一 	1	附加阻尼比折减系数	络设计
 (利務建度 地下室信息 育報组合 组合素 自定义工况组合 (三、加固定) (三、加定) <	2	钢	○ 按材料区分		考虑钢筋超强系数	村時最
● 实振型分解反应谱法 组合系数 组合素 自定义工况组合 鉴定加固 装配式 ● 实振型分解反应谱法 □ 复振型分解反应谱法 □ 复振型分解反应谱法 □ 复振型分解反应谱法 □ 承隔震元件有效刚度和有效阻尼 □ 采用输入的等效线性属性 □ 逐代确定	5	混凝土	型钢砼 5		反应谱计算方法	钢筋强度 下 室信息
	1		连梁刚度折减系数	月月 一般日年 一	 头振型分解反应谱法 前季隔季附加阻尼比省 	载组合 组合系数
自定义工况组合 鉴定加固 蒸開式	1.5		中梁刚度放大系数			组合表
		用	考虑双向地震作用	沙阳尼	「「「「「「「「」」」」	自定义工况组合 一一 完加固
				属性		電式
					● 迭代确定	
○自动采用弹性时程计算结果				·算结果	〇自动采用弾性时程计算	

此种方法会对减震器的等效参数进行反应谱迭代,迭代过程按照消能减震规程 6.3.3 条的条文说明进行。

程序的迭代过程如下:

- 1) 假定各个消能器的设计参数和消能结构的总阻尼比 ζ
- 2) 将消能减震结构的总阻尼比和各个消能器的设计参数代入分析模型中,采用振

型分解反应谱法进行结构分析

- 经结构分析可得第 i 楼层的水平剪力 Fi、水平地震作用标准值的层间位移 ui 及 第 j 个消能器的阻尼力 Fdj 及相对位移△uj
- 4) 按照消能减震规程 6.3.2-1~5 计算消能器附加给结构的有效阻尼比 ζ_{d}
- 5) 其中,位移型阻尼器耗能即为阻尼器最大相对变形△uj在滞回曲线上对应的点 所形成的平行四边形的面积;
 速度型阻尼器按下式计算:

 $W_{cj} = \lambda_1 F_{dj \max} \Delta u_j$

*F*_{djmax} = *C*(*ω*_l*u*)^α, *C*为阻尼系数, *α*为阻尼指数, *ω*_l为基本周期对应频率, 当计算 X 方向地震时, *ω*_l 取 X 向基本频率,当计算 Y 方向地震时, *ω*_l 取 Y 向 基本频率。

结构总应变能按下式计算,结构总应变能 Ws 考虑所有振型应变能之和:

$$W_s = \sum F_i u_i / 2$$

附加阻尼比按下式计算:

$$\zeta_d = \sum_{j=1}^n W_{cj} / 4\pi W_s$$

计算出 ζ_d 的同时,按下式计算出每个阻尼器的等效阻尼系数:

$$C_j = \frac{W_{cj}}{\pi \omega_1 \triangle u_j^2}$$

阻尼器的等效刚度对于速度型阻尼器恒为 0,对于位移型阻尼器取△uj 对应的 割线刚度。

- 6) 重新修正各个消能器的设计参数,并利用下式计算消能减震结构的总阻尼比尼
 比*ζ*:
 - $\zeta = \zeta_1 + \zeta_d$

 ζ_1 为主体结构阻尼比, ζ_d 为消能器附加给结构的有效阻尼比

将步骤 5 计算得到的消能减震结构的总阻尼比和各个消能器的参数作为初始假 设值,重复步骤 2~步骤 5,反复迭代,直至步骤 2 使用的消能减震结构的总阻 尼比与步骤 5 计算得到的消能减震结构的总阻尼比误差在 1%,认为收敛。

由上述步骤得到减震器的等效刚度和阻尼系数后,在反应谱计算方法中选择实振型 分解反应谱法-能量法,即可实现消能减震规程 6.3.3 条的减震结构计算方法。

反应谱计算完成后,可在 WZQ 文件中查看输出的结构总阻尼比:

🗾 wzq	.out - 记寻	本			
文件(F)	编辑(E)	格式(O)	查看(V)	帮助(H)	
X地震 振	阻尼比 型号 1 2 3 4 5	阻瓦 0.1 0.1 0.1 0.1 0.1	副比 93 93 93 93 93 93		
Y地震 振	阻尼比 型号 1 2 3 4 5	阻瓦 0.2 0.2 0.2 0.2 0.2 0.2	2比 08 08 08 08 08 08		

3、能量曲线比值法

YJK4.2.0 在弹性时程模块还提供了另一种工程中常用的附加阻尼比算法,其假定时 程分析累积能量曲线的主结构耗能与阻尼器耗能的比值关系与两种能量相应的阻尼比比 值相等,附加阻尼比公式如下:

其中阻尼耗能是地震响应最终时刻结构的固有阻尼的累积耗能,对应的是能量曲线图的 阻尼耗能标签,阻尼器耗能是地震响应最终时刻所有阻尼器的累积耗能,当结构既存在 位移型又存在速度型时,阻尼器耗能为两者之和,软件为了直观,分别输出位移型和速 度型阻尼器的能量曲线,并分开输出位移型和速度型的附加阻尼比,如下图所示:

这里需要说明的是如果上部结构是混合结构,选择材料分区来确定阻尼比,结构的 各阶振型的固有阻尼比是不同的,此时软件按上述方法计算附加阻尼比时,当时程分析 方法选择振型叠加法选项时(FNA),固有阻尼比取振型阻尼比的最大值,当选择直接 积分法时,采用瑞利阻尼所输入的两个阻尼比的平均值(软件默认第一周期和第三周 期)。

	振型A	振型B
周期:	0.760026	0.233
阻尼比:	0.05	0.05
☑质量系数a	lfa	0,632731
☑刚度系数b	eta	0.002838

六、减震结构推荐的计算方法

1、速度型阻尼器减震结构

无论是小震还是中震计算,均推荐采用弹性时程直接计算的附加阻尼比;速度型阻 尼器定义时,有效刚度及有效阻尼均填 0,非线性参数按实际填写;"减隔震元件的有 效刚度和有效阻尼"选择"采用输入的等效线性属性",进行初步反应谱计算;进入弹 性时程模块,选波,选波方法可参见书籍《减隔震建筑结构设计指南与工程应用》2.3.3 节第 3 项内容,选择振型叠加法(FNA)进行时程计算,得到附加阻尼比,可取 7 条波的 平均值,设计师可以根据实际情况对该附加阻尼比进行人工折减;将折减后的附加阻尼 比与主体结构阻尼比叠加,作为最终的结构阻尼比进行最终的反应谱计算和结构设计。

ſſſ	F	4			1				A state
节点变形	楼层结果	连接单元	能量曲线	地震时正常	陌展支座	隔震层	隔震送审报告	附加阻尼比	反应谱规范谱
	-			使用验算		v			-
		后处理				隔震验	算	减震计算	对比图

2、位移型阻尼器减震结构

(1) 小震计算

因为 BRB、金属屈服型等位移型阻尼器在小震下一般设计为保持弹性,故可直接在 BRB 定义中,将有效刚度设置为 BRB 初始刚度,因为 BRB 不屈服无耗能,有效阻尼填 为 0, "减隔震元件有效刚度和有效阻尼"中选择"采用输入的等效线性属性",直接 对有控模型进行上部结构的"生成数据+全部计算",计算完毕校核 BRB 的应力比≤ 1.0,注意 BRB 建模的支撑截面应与所选的 BRB 产品芯材等强。

(2) 中震计算

位移型阻尼器减震结构的中震计算推荐采用反应谱迭代计算,即《建筑消能减震技 术规程》6.3.3 条给出的附加阻尼比迭代方式的振型分解反应谱法;在"减隔震元件有 效刚度和有效阻尼"中选择"迭代确定"并在"反应谱计算方法"中选择"实振型分解 反应谱法","减震隔震附加阻尼比算法"选择"能量法",进行反应谱计算即可,程 序可自动迭代出各个阻尼器的等效刚度和结构总阻尼比;反应谱计算完成后,需要与时 程结果进行对比,通过"附加阻尼比折减系数"和"最大附加阻尼比"参数调整反应谱 计算得到的附加阻尼比,使反应谱结果的楼层剪力包络或者接近时程结果的楼层剪力(时 程剪力可取7条波的平均值)。

七、减震结构的中震设计方法

程序提供了两种减震结构的中震设计方法,其一是《基于保持建筑正常使用功能的 抗震技术导则》(征求意见稿),它给出的是国家标准层面的中震设计方法;其二是云南

36

省地标《建筑消能减震应用技术规程》,它适用于云南省的减震结构。下面进行分述。

1、《基于保持建筑正常使用功能的抗震技术导则》(征求意见稿)

《基于保持建筑正常使用功能的抗震技术导则》(征求意见稿)给出了减震结构的中 震设计方法,在隔震减震参数页中,减震结构设计方法选择导则中震法,可实现基于导 则的减震结构中震设计;

此种方法,构件设计同隔标类似,基于中震内力对构件进行设计。结构构件根据功 能、作用、位置及重要性等分为关键构件、普通竖向构件、重要水平构件和普通水平构 件,可在前处理特殊构件定义-减隔震设计-构件类型中进行指定,程序即可按照指定类 型按照导则 4.2 条取用不同的公式进行构件设计。

下图为一指定为重要水平构件的构件信息输出:

dsnMemInf	out - 记事	4							
文件(F) 编辑(E) 格式(O)) 查看(V)	帮助(H)						
							-		
N-B=26 (I	2000022	, J=2000	0018)(1)E	3*H(mm)=	300*700	22 27575 2	200		
Lb=4.00(m) Cover=	20(mm)	Mfb=1 Mf	b gz=1	Rcb=30.0	Fy=360 F	'yv=360		
砼梁 C30	框架梁 调	司幅梁 龙	1形 重要7	水平构件		1010 12 I	222		
livec=1.0	00 stif	=2.000	stif_w=2	2.000 s [.]	tif_s=2.(000 tf=0	0.850 nj	j=0.400	
ሻ v=1.391	12	2			-		-	2	
	-1-	-2-	-3-	-4-	-5-	-6-	-7-	-8-	-9-
-M (kNm)	0	0	-32	-144	-263	-390	-524	-664	-809
LoadCase	(0)	(0)	(27)	(27)	(27)	(27)	(27)	(27)	(27)
Top Ast	0	0	630	630	1056	1614	2365	3145	3453
% Steel	0.00	0.00	0.30	0.30	0.54	0.82	1.25	1.66	1.82
+M (kNm)	288	269	284	326	360	387	407	420	429
LoadCase	(0)	(0)	(28)	(28)	(28)	(28)	(28)	(28)	(28)
Btm Ast	1328	1233	1146	1327	1480	1601	1691	1753	1907
% Steel	0.67	0.63	0.58	0.67	0.75	0.81	0.86	0.89	1.01
V(kN)	-246	-260	-275	-292	-310	-328	-344	-358	-446
LoadCase	(27)	(27)	(27)	(27)	(27)	(27)	(27)	(27)	(27)
Asv	38	43	49	55	61	68	73	78	110
Rsv	0.13	0.14	0.16	0.18	0.20	0.23	0.24	0.26	0.37
非加密区第	節面积:	66							

2、云南省地标《建筑消能减震应用技术规程》

云南省《建筑消能减震应用技术规程》将减震结构分为第一类抗震设防目标的结构 和第二类抗震设防目标的结构,第二类抗震设防目标的结构即按小震设计的结构,第一 类抗震设防目标的结构即按中震设计的结构;

对于第一类抗震设防目标的结构,自动按规程 5.3.7 条进行中震的构件设计,按规 程 5.3.8 条~5.3.13 条执行相应的内力调整系数,并且自动生成小震模型,进行小震配筋 的自动包络;可选择考虑钢筋超强系数,适用于梁、柱、墙构件的正截面验算。

制信息	□ 隔震 □ 減震	包络设计	
」信息 5系数	隔震	大震计算模型 不屈服	弹性
效应		大震地震影响系数最大值	0.9
「水解愛到」 【信息	隔炭炭炭方	周期折减系数 1 特征周期	0.3
参数 注身	局震转构设计方法 分部设计 分部设计 分部设计 分部设计法	不屈服	
信息	调整后水平向减震系数(β/ψ) 1	结构阻尼比(%)	5
EX素列的系数曲线 退式随机模拟法	计算中需非隔震模型	 ○ 主後規一 ○ 按材料区分 钢 	2
影作用放大系数 设计	减震] 型钢砼 5 混凝土	5
包络设计	減震结构设计方法 云南減震规程 ✓		1
	□ 第一类拾卖设防日标	」 中梁刚度放大系数	1.5
【信息 】 计信息	STREET STREET	■考虑双向地震作用	
设计信息	最大附加阻尼比 0.25	弹性	
	附加阻尼比折减系数 1	结构阻尼比(%)	5
見 参数	考虑钢筋超强系数		2
度	反应谱计算方法	型钢砼 5 混凝土	5
	● 实振型分解反应谱法	法沙刚度长闻妥粉	1
·数		中梁刚度放大系数	1.5
工况组合		考虑双向地震作用	1202
1	 →M端浸元IF有效剂度和有效阻尼 ○采用输入的等效线性属性 ○迭代确定 ④自动采用弹性时程计算结果 		

规程 3.0.2 规定了罕遇地震下消能器耗能占比的要求,动力弹塑性时程模块的能量 图中可输出耗能占比,以检验是否满足规范限值。

八、YJK 对于非地震荷载工况采用的减震器刚度

对于静力工况下减震器的刚度取值说明如下:

1、当减隔震元件有效刚度和有效阻尼选择采用输入的等效线性属性时,静力工况
 的减震器刚度取减震器定义时输入的有效刚度;

2、当减隔震元件有效刚度和有效阻尼选择迭代确定时,静力工况的减震器刚度取 减震器定义时输入的有效刚度;

3、当减隔震元件有效刚度和有效阻尼选择自动采用弹性时程计算结果时,静力工况的减震器刚度取弹性时程计算的等效刚度;

九、YJK 消能减震参数介绍

《减震消能减震技术规程》JGJ297-2013 第 4.1.8: 消能器的恢复力模型宜按下列 规定选取: 1.软钢消能器和屈曲约束支撑可采用双线性模型、三线性模型或 wen 模型

2.粘滞消能器可采用麦克斯韦模型。

YJK 的消能减震单元支持"阻尼器麦克斯韦"、"阻尼器开尔文"、"塑性单元 Wen"、"屈曲约束支撑"四种连接属性,其中粘滞阻尼器建议选择"阻尼器麦克斯 韦",程序采用麦克斯韦(Maxwell)模型进行计算;金属剪切阻尼器、屈曲约束支撑 等可选用"塑性单元 Wen"或者"屈曲约束支撑",程序都是采用 Wen 模型进行计算。

对于这四种类型连接属性的参数,都包含线性参数和非线性参数,其中线性参数由 有效刚度和有效阻尼构成,线性参数用于反应谱计算,对时程分析计算有时有些影响; 非线性参数跟连接属性有关,用于时程分析计算,而在反应谱计算中忽略。

类型:	阻尼器		•) ř	趣定义 [无相关定义	
	有效刚度 (ktN/m)	有效阻尼 (kdM. s/m)	非线性	刚度 (kdN/m)	阻尼 (kdN.s/m)	阻尼指数	
🔽 V1	0	0		0	0	0	
🕅 V2	0	0		0	0	0	
🕅 V3	0	0		0	0	0	
🕅 R1	0	0		0	0	0	
🕅 R2	0	0		0	0	0	
R 3	0	0		0	0	0	

下面对各参数分别介绍。

1、有效刚度

对于任意一种类型的非线性连接单元,用户可对 6 个自由度指定有效刚度(记做 K_e)。有效刚度用于线性计算,如恒、活、风等静力分析、模态(周期)分析、反应谱 分析(不包括迭代计算)、模态叠加法线性时程分析,在这些分析中,单元的非线性参 数被忽略。

有效刚度除了在线性分析中起作用,在非线性时程分析中也会起作用。对于非线性 时程分析计算,软件会读入非线性参数,同时也会用到有效刚度,并最终分析出构件的 滞回曲线。下面我们对快速非线性分析(FNA)法和直接积分法两种方法分别进行说明。

这里需要说明的是,盈建科软件的弹性时程分析模块包含"振型叠加法"和"直接 积分法"。"振型叠加法"是采用模态叠加法进行计算,当结构中有非线性构件时,程 序自动采用快速非线性分析(FNA)方法计算,否则采用模态叠加法线性时程方法计算。

"直接积分法"是采用直接积分法来进行时程分析,同样可用于计算线性和非线性问题。

对于 FNA 法,其本质是非线性模态时程分析法,因此它会使用基于有效刚度计算 出的振动模态进行非线性力的迭代(非线性力的计算采用非线性参数),所以有效刚度 会影响 FNA 计算结果,特别是在一些非线性构件的有效刚度对其周期影响较大的结构 中,如隔震结构和布置了较多减震器的减震结构。对于这样的结构,有效刚度对非线性 时程分析的结果的影响是不可忽略的,需要用户填入较为准确的有效刚度,FNA 法才能 得到较为准确的计算结果。

对于直接积分法,其算法本身与线性有效刚度没有关联。但由于隐式直接积分法一 般采用瑞利阻尼,而瑞利阻尼系数的计算需要输入两个周期以及与其对应的阻尼比

(YJK 直接积分法目前默认采用上部结构计算结果的第一周期和第三周期,这是因为一 般情况下,前两个周期为平动周期、第三周期为扭转周期,选第一和第三周期能够更具 有代表性)。而周期分析是基于有效刚度的,所以有效刚度会间接地影响 YJK 直接积分 法默认的瑞利阻尼,进而影响直接积分法的结果。当然,软件采用的瑞利阻尼是允许用 户修改的,若用户自行确定瑞利阻尼,则也可与有效刚度完全无关。

依据以上理论分析和实际的计算结果来看,有效刚度对直接积分法的影响相比于对 FNA 法的影响要小许多,因此 YJK 推荐采用直接积分法,真实计算所有减震器的变形-内力滞回曲线,并根据滞回曲线自动计算有效刚度和有效阻尼。

但用户应注意,在使用 YJK 的直接积分法自动计算有效刚度和有效阻尼的功能时, 若使用自动计算的有效刚度和有效阻尼重新计算结构周期,该周期如果与用户第一次计 算的结构周期差异很大,则应考虑迭代一次。具体方法是,用户只需在直接积分法的

"计算参数"里面的"阻尼参数"中,填入新的振型 A 和振型 B 的周期结果,再次计算 有效刚度和有效阻尼即可。

42

地震作用		
地震波 ArtWave-	RH1TG045,Tg(0.45)	~
主方向与 ^X 轴正向3	夹角(度) 0	
1程分析		
分析方法		
○振型叠加法	◉ 直接积分》	 ±
起始时间(s) 0	结束印	时间(s) 31
时间步长(s) 0.0	 01 输出间	隔步数 1
输出间隔(s) 0.0	11	
HHT和分参数		
a 0	β 0.25	γ 0.5
12111111111111111111111111111111111111		-
「「「「「「」」」」」「「」」」」「「」」」「「」」」」「「」」」」」「」」」「」」」」	振型A	振型B
周期:	0.760026	0.233
阻尼比:	0.05	0.05
☑质量系数alfa		0.632731
☑刚度系数beta	3	0.002838

2、有效阻尼

对于任意一种类型的非线性连接单元,用户可对 6 个自由度指定有效阻尼(记做 C。)。有效阻尼仅用于计算附加阻尼比,与非线性时程分析无任何关系,这是与有效刚 度不同的。

YJK 计算附加阻尼比时,当以下二个条件被同时满足时:

1.用户选择采用能量法计算附加阻尼比,

2.勾选迭代确定有效刚度和阻尼,

对于速度型阻尼器,程序内部会将阻尼器两端的运动假定为一个简谐运动,且利用 阻尼器的非线性参数来计算其耗能,从而计算其附加阻尼比;对于位移型阻尼器,软件 也是根据非线性参数形成的理论滞回曲线计算耗能,从而得到附加阻尼比。 除上述情况之外,软件均会采用有效阻尼来计算附加阻尼比。

后续计算中,一般使用附加阻尼比的情况有两种。一是反应谱分析在计算地震影响 系数时需要附加阻尼比;二是模态叠加法线性时程分析会读入附加阻尼比。但是 YJK 采 用模态叠加法时程分析时,对于非线性构件会自动调用 FNA 法来进行时程分析,由于 非线性时程分法、直接积分法、大震弹塑性分析均会读入非线性参数,真实考虑非线性 单元的滞回曲线和耗能,不会读入附加阻尼比,所以此时的有效阻尼与非线性时程分析 无任何关联。

3、有效刚度和有效阻尼的附加说明

以下是有效刚度和有效阻尼的附加说明。根据前文所述,用户若使用 YJK 提供的自动计算有效刚度和有效阻尼的功能,非线性参数应按厂家提供的参数填写;有效刚度会 略微影响到直接积分法的结果,可以参考下面的原则填写;有效阻尼对非线性分析没有 任何影响,一般可填 0。有效刚度和有效阻尼参数取值原则:

1.对于屈曲约束支撑(塑性单元 Wen)来说,对于小震计算,阻尼器处于弹性阶段, 不考虑其屈服耗能,有效刚度直接取为初始刚度;对于中震计算,阻尼器屈服耗能,其 有效刚度应是一个处于初始刚度和屈服后刚度(屈服后刚度比与屈服前刚度的乘积)之 间的值。

2.一般而言,随着地震波加速度的增大,屈曲约束支撑由于会更多的进入屈服段, 会导致其有效刚度有减小趋势,同时其滞回曲线更加饱满,所以其有效阻尼应有增大的 趋势。但两者并无绝对的大小关系,即并非有效刚度越小的屈曲约束支撑,有效阻尼越 大。

3.对于未布置在地震波方向的屈曲约束支撑而言,可能并不承担减震作用,基本相 当于一根弹簧,有效刚度与初始刚度一致,比如当地震沿 X 向,沿 Y 向布置的某轴向型 屈曲约束支撑可能不承担地震作用。所以程序在自动计算有效刚度和有效阻尼时,自动 取其布置方向的结果。

4.隔震支座水平方向同样采用 Wen 模型计算,其屈服指数内置为 2.0,其有效刚度

44

的特征与上述的1、2、3三点类似。

5.对于速度型阻尼器而言,有效刚度一般可填 0,也可采用程序自动计算的有效刚度。程序在减震器等效参数中,提供了速度型阻尼器有效刚度置为 0 的选项,如下图所示。

載震器等效参数计算选项	节点与能望时程输出选项
□速度型阻尼器有效刚度置为0	☑ 是否输出节点时程
一位移型阻尼器采用割线刚度	☑是否输出能量时程
等效参数取多条波的平均值	

虽然用户可以将速度型阻尼器的有效刚度设置为 0,但也应对自动计算的其有效刚 度结果进行关注。在直接积分法模块中,点击"构件内力滞回"按钮,选择相应构件即 可看到滞回曲线和有效刚度的关系。若沿地震主方向布置的速度型阻尼器的有效刚度相 对整个滞回曲线是一个绝对值较小的值(如下图),则正常。反之,用户需要关注模型 和参数是否有问题。

盈建科软件的速度型阻尼器可采用 Maxwell 单元计算,即由一根弹簧与一根阻尼器

串联而成(后文详述)。对于未布置在地震波方向的阻尼器,两端速度较小,即使弹簧 刚度值填的较大,也会使阻尼器更多地表现出弹簧特性。所以程序在自动计算速度型阻 尼器的有效刚度和有效阻尼时,与屈曲约束支撑类似,取其布置方向的计算结果作为最 终结果。

4、减震器非线性参数说明

(1) 屈曲约束支撑、塑性单元 Wen

屈曲约束支撑和塑性单元 Wen 有相同的参数,如下图所示,其中非线性参数有刚度 k、屈服力 fy、屈服后刚度比 r、屈服指数 s 四个参数。意义如下:

j

d

f A

i i

四个参数的具体意义可以从上图曲线中看出, 文字解释如下:

1.刚度是指屈曲约束支撑的初始刚度及其卸载时的刚度。

2.屈服力是指使得屈曲约束支撑达到屈服时,其所承担的力。其值与双线性模型曲 线拐点处的内力值一致。

3.屈服后刚度比是指屈服后刚度与初始刚度的比值。

4.屈服指数是表征构件由屈服前刚度过渡到屈服后刚度时的平滑处理程度的参数, 取大于零的值。当屈服指数无限大时,不做平滑处理,此时 Wen 模型与双线性模型一 致;当屈服指数越小时,平滑处理的程度就越高。

(2) 速度型阻尼器

阻尼器麦克斯韦的非线性参数包含三个,刚度 k、阻尼 c 和阻尼指数 α_{1} 采用 Maxwell 单元计算,即阻尼器和弹簧串联而成,如下图所示。

连接属性1	类型:	阻尼器麦克	も斯韦	~					
	7律 k	自效刚度KE N/m,kN.m/r	有效阻尼 adCE(kN.s/m	非线性	刚度 K(kN/m)	阻尼 C(kN.s/m)	阻尼指数 exp		k
	🗹 V1	0	0		80000	400	0.2	>	
	🗌 V2	0	0		0	0	0	\leq	
	🗌 V3	0	0		0	0	0		
	🗌 R1	0	0		0	0	0		
	🗌 R2	0	0		0	0	0		-
	R3	0	0		0	0	0		

对于 Maxwell 单元,应注意其弹簧与阻尼是串联关系,而非并联关系。所以其弹簧 内力与阻尼内力相等,等于该单元的内力。即:

$$F = kX_k = cV_c^{\alpha}$$

上式中,X_k为弹簧变形,V_c为阻尼两端的速度差。V_c对时间的积分与X_k之和为构 件两端的总变形。一般情况下用户用 Maxwell 单元模拟粘滞型阻尼器,所以往往希望其 刚度无限大(但实际不可能无限大,会造成数值困难,后文详述)。这样一来,其力学 表现基本接近于: $F = cV^{\alpha}$

式中,V为整根构件两端的相对速度。从上式中我们可以看出,阻尼系数c是一个 线性系数,对阻尼力有一个线性缩放的作用;阻尼指数α会影响曲线的凸凹性,在α为 1时为直线。具体见下两图,其中阻尼系数c的单位均为 kN*(s/m)^α。

粘滞阻尼器性能曲线

速度型阻尼器之所以建议采用(弹簧与阻尼器串联)而非 Kelvin 单元(弹簧与阻 尼器并联),是基于数值计算和工程实际两方面的考虑:

1.从数值计算角度来说,单纯的阻尼器(不含弹簧)的阻尼力直接由速度决定,一

般与正常的位移型构件有一个相位差,会导致计算较难收敛。而串联一个弹簧的 Maxwell 单元,数值稳定性就会好很多,当然若串联刚度过大,也会出现与 Kelvin 单 元类似的情况。

2.从工程实际角度来说,串联弹簧对捕捉阻尼器的实际非线性阻尼行为非常重要, 特别是具有分数指数时。串联弹簧表示阻尼设备(包括流体柱和连接机构)的弹性作用, 可以保证在小速率时阻尼器部分不产生不符合实际的过大阻尼力(对总体结构行为有非 常显著影响)。因而在小速率时,Maxwell 单元会更多地表现出弹簧特性。

用户往往想给定一个较大的串联弹簧刚度 k 值,使得变形完全由阻尼器产生。但过 大的 k 值会引发数值困难。用户可以从设备生产厂家获取弹性柔度的实际值,或者从工 程角度估一个值,根据经验让阻尼系数 c 与弹簧刚度 k 的比值在 1E-3s 至 1E-4s 的范围 内为好。一般对于带有速度型阻尼器的模型,在进行非线性时程分析时,时间步长与 c/k 的值保持一致为最好。但考虑到计算速度问题,一般选取 1E-3s 的时间步长即可。

5、非线性单元局部坐标系

非线性连接单元 6 个自由度的参数是局部坐标系下的参数,局部坐标系是由斜撑定 位确定的,分为两种情况:

1. 若定位斜撑是平行于整体坐标 Z 轴的, 那么局部坐标与整体坐标的关系:

U1 = -Z, U2 = Y, U3 = X

2. 若定位斜撑不平行于 Z 轴,那么局部坐标系的计算方式为:

U1 = 斜撑轴向, U3 = U1 叉乘整体坐标 Z轴, U2 = U3 叉乘 U1

没计算前,用户可以在温度荷载模块清晰查看斜撑的局部坐标系

计算后,可以在设计结果里面三维内力里查看

第三章 布置粘滞消能器结构小震设计实例

此文中无控模型即未设置消能器的结构模型;有控模型是设置了消能器单元的结构 模型。

采用粘滞流体阻尼器的消能减震结构的设计一般步骤如下:

对无控模型进行小震反应谱法计算。

看是否存在层间位移、配筋超限情况,以方便后续指定减震目标用。此处叫"无 控-原模型",此模型的结构阻尼比采用未考虑消能减震效果前的,比如钢筋混凝土结 构为 5%,钢结构为 2%。

无控模型提高结构阻尼比试算,初步确定减震目标。

粘滞消能器是速度相关型消能器,理论上不提供静刚度,只考虑其附加阻尼比。所 以在粘滞消能器设置设计时,减震目标体现在使结构的附加阻尼比达到某一个设计值, 从而使减震结构能够达到规范的设计要求。

通过试算来完成减震目标的设定。此模型文件设置为"无控-目标模型"

有控模型初步设计。

初步设计消能器的参数和数量,布置在无控原模型中,

有控模型反应谱法计算。此为第5步的中间过程;

有控模型小震直接积分时程法计算得到有效刚度和有效阻尼;

采用和规范谱拟合的非常好的人工波来计算。

有控模型读取第5步有效刚度和有效阻尼进行反应谱法计算设计(YJK 推荐);

有控模型和无控目标模型进行时程结果对比验证(传统方式);

采用无控原模型选的多条波。

采用无控目标模型进行最终结构设计(传统方式)

有控模型进行大震弹塑性分析,确定阻尼器最大阻尼力及最大位移、及子结构设计。

本例设计流程

传统设计流程

下面以一个工程实例来讲述整个布置黏滞流体消能器的减震结构的设计过程。

工程概况

本工程抗震设防烈度 8 度,设计基本地震加速度峰值为 0.30g,设计地震分组第三组,II 类场地,场地特征周期 0.45 秒,采用框架结构形式,楼层数 6 层,无地下室, 总高 23 米。

一、对无控模型(原结构模型)进行小震反应谱法计算

运行 YJK,对无控原模型进行小震反应谱法计算。此结构是钢筋混凝土结构,其结构阻尼比为 5%。

采用强刚模型和非强刚模型同时计算模式。

查看其层间位移角和位移比:

		地震作	乍用下的楼层最大	位移表位移信息	2	
层	X 方向层位	X 方向层间位	X 方向层间位	Y 方向层位	Y 方向层间位	Y 方向层间位
号	移比	移比	移角	移比	移比	移角
1	1.02	1.02	1/614	1.07	1.07	1/485
2	1.02	1.02	1/392	1.07	1.08	1/334
3	1.02	1.02	1/396	1.08	1.08	1/351
4	1.02	1.02	1/394	1.08	1.07	1/369
5	1.02	1.02	1/506	1.07	1.07	1/504
6	1.02	1.02	1/723	1.07	1.07	1/739

表1 地震作用下的楼层最大位移表

表 2 地震作用规定水平力下的楼层最大位移表

		地震作用规	定水平力下的楼底	层最大位移表位	移信息	
层	X 方向层位	X 方向层间位	X 方向层间位	Y 方向层位	Y 方向层间位	Y 方向层间位
号	移比	移比	移角	移比	移比	移角
1	1.00	1.00	1/620	1.02	1.02	1/508
2	1.00	1.00	1/394	1.02	1.03	1/350
3	1.00	1.01	1/397	1.03	1.03	1/367
4	1.00	1.00	1/394	1.03	1.02	1/385
5	1.00	1.00	1/506	1.03	1.02	1/526
6	1.00	1.00	1/722	1.02	1.02	1/767

表 3 风载作用下的楼层最大位移表

			风载作用	下的楼层最大位积	多表位移信息		
层旦	塔旦	X 方向层位	X 方向层间	X 方向层间位	Y 方向层位	Y 方向层间	Y 方向层间位
5	5	移山	11111111111111111111111111111111111111	沙用	移山	业物心	沙用
1	1	1.01	1.01	1/8844	1.03	1.03	1/4085
2	1	1.01	1.01	1/5889	1.04	1.05	1/2941
3	1	1.01	1.01	1/6152	1.04	1.05	1/3199
4	1	1.01	1.01	1/6265	1.04	1.04	1/3448
5	1	1.01	1.01	1/8056	1.04	1.03	1/4696
6	1	1.01	1.01	1/10857	1.03	1.02	1/6458

可见在地震工况下,一至五层层间位移角都超限,不满足规范要求。 查看其楼层地震剪力,见下表:

		地震作用下结构作	用力	
层号	Vx(kN)	$Mx(kN \cdot m)$	Vy(kN)	My(kN·m)
1	5906	92553	5715	88522
2	5559	66756	5342	63653
3	4874	46941	4657	44655
4	3955	29462	3766	27939
5	2806	15059	2655	14193
6	1277	4726	1191	4406

表 4 地震作用下结构作用力

非强刚下的配筋: 1-4 层很多梁抗剪超限、柱节点域抗剪超限,青色的为超限的。

57

🗍 dsnMemInf	- 记事本	- 03	Sec							georgen and the state	
这件(F) 编辑(E) 格式(O)) 查看(V)	帮助(H)								
N-B=20(I Lb=1.800m 砼梁 框架 livec=1(別v=1.200	[=1000018 の Cover= 深 周幅 000 stif	3, J=100 20(mm) 梁 矩形 =1.000	0019)(1)B* Nfb=2 Nft tf=0.850	H(mm)= _gz=2 nj=0.	400*600 Rcb=30.0 400	Fy=360	 Fyv=270		梁抗剪超	国限	
-M(kNm) LoadCase Top Ast % Steel +M(kNm) LoadCase Btm Ast % Steel V(kN) LoadCase Asv	$\begin{array}{c} -1-\\ -771\\ (31)\\ 3428\\ 1.61\\ 694\\ (34)\\ 3048\\ 1.43\\ 1198\\ (31)\\ 587\end{array}$	-2- -708 (31) 3489 1.64 633 (34) 3012 1.41 1000 (31) 476	-3- -484 (31) 2045 0.92 413 (34) 1706 0.77 998 (31) 475	$\begin{array}{c} -4-\\ -261\\ (\ 31)\\ 1036\\ 0.\ 46\\ 192\\ (\ 34)\\ 751\\ 0.\ 34\\ 995\\ (\ 31)\\ 473\end{array}$	$\begin{array}{c} -5-\\ -50\\ (1)\\ 600\\ 0.25\\ 3\\ (0)\\ 600\\ 0.25\\ 992\\ (31)\\ 471\end{array}$	-6- -261 (30) 1034 0.46 194 (35) 757 0.34 -990 (30) 470	-7- -483 (30) 2038 0.91 415 (35) 1717 0.77 -993 (30) 472	-8- -706 (30) 3475 1.63 636 (35) 3032 1.42 -995 (30) 473	$\begin{array}{c} -768 \\ (30) \\ 3416 \\ 1,60 \\ 698 \\ (35) \\ 3064 \\ 1,44 \\ -1193 \\ (30) \\ 584 \end{array}$		
斯加位位位置置置置置 3 4 ***位位位位置置置置置 3 4 ***位位位位置置置置置 3 4 ***位位位位置置置置 3 4 ***位位位位置置 3 4 ***位位位置置置 3 4 ***位位位置 3 4 ***位位位置 3 4 ***	·积号号号号号号号号号号号号号号号号号号号号号号号号号号号号号号号号号号号号	1.13 587 31) 31) 31) 截截截 31) 截截截 截截 31) 截截 截截 截截 截 截 截 截 截 截 截 截 截	1. 满满满满满无足足无抗抗 1. 清满满满满满满满满 一. 1. 元. 元. 元. 元. 元. 元. 元. 元	前前前前前前前前前前前前前前前前前前前前前前前前前前前前前前前前前前前前前前	1.18 V/b/h0=5. V/b/h0=4. V/b/h0=4. V/b/h0=4. V/b/h0=4. V/b/h0=4. V/b/h0=5.	1,18 ,49>1/7 ,48>1/7 ,46>1/7 ,46>1/7 ,45>1/7 ,45>1/7 ,46>1/7 ,35>1/7	1.18 're*0.20* 're*0.20* 're*0.20* 're*0.20* 're*0.20* 're*0.20* 're*0.20* 're*0.20*	1.18 β c*fc=3 β c*fc=3 β c*fc=3 β c*fc=3 β c*fc=3 β c*fc=3 β c*fc=3 β c*fc=3 β c*fc=3 β c*fc=3	1. 40 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37	《砼砼砼松	>11.3.3 >11.3.3 >11.3.3 >11.3.3 >11.3.3 >11.3.3 >11.3.3 >11.3.3 >11.3.3 >11.3.3 >11.3.3 >11.3.3 >11.3.3 >>11.3.3 >>11.3.3

dsnMemInf - 记事本	and Barranteen and the second second second
文件(F) 编辑(E) 格式(O) 查看(V) 帮助(H)	
N_C-11 (T-11 T-1000035)(1)B*H(mm)-200*650	
Cover= 20(mn) Cx=1.00 Cy=1.00 Lcx=4.50(m) Lcy=4.50(m) Nfc=2 Nfc gz=2 R	Rcc=45.0 Fy=360 Fyv=270
P 砼柱 矩形	
11.500 11.950 11.500 11.950	计学上标志区长前初阳
$\lambda_{c=2,970}$	住世思核心区加势地限
(30)Nu= -5104.1 Uc= 0.46 Rs= 4.10(%) Rsv= 0.91(%) Asc= 314	
(35)N= -668.6 Mx= -802.6 My= 8.1 Asxt= 2316 Asxt0=	2316
(35)N = -668.6 Mx = 2016.9 My = -23.0 Asybe = 6794 Asybe = -23.0 Asybe = 6794 Asybe = -23.0 Asybe	6794
(33)N= -2654.6 Mx= 58.2 My= -2234.7 Asyb= 4503 Asyb0=	4503
(35)N= -668.6 Vx= -10.1 Vy= -930.2 Ts= 6.5 Asvx=	281 Asvx0= 254
(35)N= -668.6 Vx= -10.1 Vy= -930.2 Is= 6.5 Asvy= 节占核芯区设计结里.	319 Asvy0= 319
(33) N= -2168.6 Vjx= -2690.2 Asvjx= 755 Asvjxcal=	755
(31) N= -1316.9 Vjy= -3513.4 Asvjy= 1416 Asvjycal= 1	1416
**(组合亏:51) 卫总核心区截面小确定抗势要求 VJY=-5515.4/1/ fre*0.50*1.0	00* P C*IC*DJ*NJ=3214.8
抗型承载力: CB XF= 1230.06 CB YF= 1291.63	

从以上结果可以看出:

1、1-5 层层间位移角超限;

2、部分梁柱抗剪超限;

二、无控模型提高结构阻尼比试算,确定减震目标

复制无控原模型,改为"无控-目标模型"

在进行粘滞消能器设置的设计中,减震目标通常体现为使结构的附加阻尼比达到某 一设计值,从而使消能减震结构能够达到规范的要求。例如混凝土结构不设置阻尼器时 结构阻尼比为 5%,设置阻尼器后目标阻尼比为 21%。楼层剪力减小 40%左右。

通过试算来完成减震目标的设定。经过多次试算,当该结构阻尼比为 21%时,构件 不再有超限现象,层间位移角满足要求。

则此确定的减震目标为结构阻尼比提高至 21%。

结构总体信息 计算控制信息	地震信息 > 地震信息 设计地震分组: ◎ —	© _	结构阻尼比(%)			21
控制信息 二阶效应	🔲 按新区划图计算				*	2
风荷载信息	设防烈度	8 (0.3g) 🔻	◎ 技材科区方	-	1P9	-
基本	场地类别	II 👻	呈的状況上	2	266/9EL	5
地震信息	特征周期	0. 45	偶然偏心 ☑ 考虑偶然偏心 X	0.05	Y	0.05
自定义影响系数曲线	周期折减系数	0.75	偶然偏心计算方法:			
地展TF用加入杀戮 性能设计	特征值分析参数		● 等效扭矩法(传	统法)		
设计信息	分析类型	WYD-RITZ 👻	◎ 瑞利-里兹投影	反射谱法	(新算法)	
沽何甄信息 构件设计信息	◎ 用户定义振型数	15	隔空域雲			

强制刚性楼板假定模型下看位移比和层间位移角等整体指标,如下图:

			地震作用	目下的楼层最大位	移表位移信息		
层	塔	X 方向层位	X 方向层间	X 方向层间位	Y 方向层位	Y 方向层间	Y 方向层间位
号	号	移比	位移比	移角	移比	位移比	移角
1	1	1.00	1.00	1/955	1.01	1.01	1/786
2	1	1.01	1.01	1/612	1.01	1.01	1/550
3	1	1.01	1.01	1/624	1.01	1.02	1/583
4	1	1.01	1.01	1/629	1.01	1.02	1/615
5	1	1.00	1.01	1/821	1.02	1.02	1/841
6	1	1.00	1.01	1/1188	1.02	1.03	1/1235

表 5 地震作用下的楼层最大位移表

表 6 地震作用规定水平力下的楼层最大位移表

	地震作	用规定水平力下的楼原	层最大位移表位移信	息
层号	X+方向层位移比	X+方向层间位移比	Y+方向层位移比	Y+方向层间位移比
1	1.06	1.06	1.15	1.15
2	1.06	1.06	1.16	1.16
3	1.06	1.06	1.16	1.17
4	1.06	1.06	1.16	1.17
5	1.06	1.06	1.17	1.17
6	1.06	1.06	1.17	1.17
	X-方向层位移比	X-方向层间位移比	Y-方向层位移比	Y-方向层间位移比
1	1.06	1.06	1.13	1.13
2	1.06	1.05	1.13	1.13
3	1.05	1.05	1.13	1.13
4	1.05	1.05	1.13	1.13
5	1.05	1.05	1.13	1.13
6	1.05	1.05	1.13	1.13

综上所有构件都不超限,位移比和层间位移角均满足《抗规》相应要求。

所以可以将目标定为结构总阻尼比 X 和 Y 均为 21%,即消能器附加给结构的附加 阻尼比为 16%。

		ţ	也震作用下结构(乍用力	
层号	塔号	5%	Vx(kN)21%	5%Vy(kN)	21%Vy(kN)
1	1	5906.75	3903.05	5715.15	3816.00
2	1	5559.37	3659.04	5342.69	3551.65
3	1	4874.44	3176.66	4657.12	3063.48
4	1	3955.11	2533.43	3766.46	2435.06
5	1	2806.54	1764.14	2655.23	1686.69
6	1	1277.37	790.22	1191.04	745.76

表 7 地震作用下结构作用力

三、初步设计有控模型方案

1、粘滞阻尼器选用一般原则

(1) 粘滞阻尼器载荷的选择:按安装节点最大阻尼力<额定载荷的原则选用;

(2)阻尼指数α以结构抗震为主时一般取 0.1~0.3,以结构抗风为主时可选取 0.4 左右,同时兼顾结构抗风和抗震设计时取 0.3 左右。

仅供参考。

2、建立初设方案模型--初步设计消能器布置数量和位置

初步设定采用筒式流体粘滞阻尼器,参数初步设定为初始刚度 4.5e6kN/m,阻尼系数: C=400kN.s/m 阻尼指数 0.2.

将原无消能器的模型复制一份,设置为"有控-初设",如下图:

。 57853-元控-日标模型20%
》 57853-无控-原模型5%-小震
57853-有控-初设-

结构布置如图:从底层到顶层,人字形布置,1-3 层每层 8 个,4-5 层每层设置 7 个筒式粘滞阻尼器。

建模时将消能器按斜撑构件建立,材料类别一般设置为 5(钢构件)即可,因为在 前处理将会定义成阻尼器单元,阻尼器单元会自动替换建模时的斜撑构件。

3、指定阻尼器单元属性

前处理中"特殊支撑"中点击"设置连接属性"对话框,如下图,选择阻尼器,并 设置 U1 方向的参数:

阻尼器两端一般设置为铰接。

注意: 阻尼系数的单位软件界面显示不全, 应是 $kN^*(s/m)^{\circ}$

四、有控模型小震时程法计算

1、有控模型小震反应谱法计算

首先要对有控模型进行小震反应谱计算,此为时程方法的中间过程,不是最终结果。 保存模型,进入到计算参数中,地震参数设置"减震隔震附加阻尼比"设置为"能 量法"。(能量法和强制解耦法后续有详细解释)。注意结构阻尼比还应按无控模型的 填写,此例为 5%。

进行生成数据+全部计算后,得到反应谱法计算结果。反应谱法计算过程是进行时 程计算必须的中间过程。

2、直接积分时程法计算有效刚度有效阻尼

在"弹性时程分析"菜单的"人工波生成"对话框上生成一条和规范谱拟合的非常 好的人工波,也可以生成多条波,程序会自动取多条波平均值。

目标谱参数设置	ŧ							
设防烈度	8 (0.3g) •						
最大影响系数	0.24							
峰值加速度	110	cm/s						
特征周期	0.45	(s)						
阻尼比	0.05							
起始周期	0.02	(s)						
终止周期	6	(s)						
周期间隔	0.001	(s)						
					查看地震波信	息		生まして地震は
地震波参数设置	τ			0.00	地表进去		▼ 改名	主成八土地震波
地震波参数设置 地震动时长	30		地震动步长	0.02	地辰双名			- // 소집값 - // ㅠ ㅁ크
地震波参数设置 地震动时长 平台段开始时刻	30 30		地震动步长 生成地震波组数	1	地震波名 地震波方向	■ 主方向 ■	次方向	保存图形 打开目录

11個作用						
地震波 人口	E波1					~
主方向与X轴	正向夹角	甬(度)	0			
报分析						
分析方法						
 万 折 万 本 ○ 振型叠力 	心法		直接积分	法		
				- 10-711	22.02	_
起始时间(s)	U		结宋	时间(s)	30.02	
时间步长(s)	0.01		输出ì	郇隔步数	1	
输出间隔(s)	0.01			迭代招	制参数…	
HHT和分参数			0			
a 0		β	0.25		γ 0.5	
					-	_
瑞 利阻尼		振	ĽΑ		振型B	
周期:		0.909	2	0.8	8117	
阻尼比:		0.05		0.	05	
☑质重系	数alfa			0.	365110	
☑刚度系统	数beta			0.0	006825	
				1	1.000	

在工况定义中选择直接积分法进行时程计算,在工况组合中设置主方向峰值加速度, 次方向及竖方向峰值加速度设为 0。

号	恒载系数	活载系数	峰值加速度类型	主方向峰值加速度(cm/s2)	次方向峰值加速度(cm/s2)	竖方向峰值加速度(cm/s2
1	0.00	0.00	PGA	110	0.00	0.00
		1				1

进行时程计算(直接积分法)后得到时程结果。

绘制几个阻尼器的滞回曲线

程序由此滞回曲线会自动算相应的有效刚度和有效阻尼。

3、读取直接积分法得到的有效刚度和阻尼进行反应谱法计算

返回上部结构的计算参数中, 在"地震信息-隔震减震"中, "减隔震元件的有效 刚度和有效阻尼"中选择"自动采用弹性时程计算结果", 然后再进行"生成数据+全 部计算"。

a la de la della	□隔震 ☑ 滅震	包络设计	
則信息 度乏料	隔震	大震计算模型 一不屈服	弹性
阶效应	隔震层数	大震地震影响系数最大值	0.9
沂求解参数 諾信自	隔震层层号	周期折减系数 1 特征周	XR 0.45
本参数	隔震结构设计方法 分部设计 👻		
3.荷教	分部设计法	结构阻尼比(%)	
<u>.</u>	调整后水平向减震系数(β/Φ) ¹	④ 全楼统一	5
系数曲线 和 描切法	□ 计算中震非隔震模型	○ 按材料区分 钢	2
系数		型钢砼 5 混凝土	5
i+		连梁刚度折减系数	1
× H	五用病辰规性 □ 第二米抗雲沿防日結 小雲αMay 0.04	中梁刚度放大系数	1.5
		□ 考虑双向地震作用	
包	機構業 泉土がわれ日日レ 0.25	弹性	
	ARX/PIJ/JUPL/S/C 5.C0	结构阻尼比(%)	(r
	1 * 市田路邦2月系計	② 全楼统一	5
		○ 按材料区分 钢	2
	以应喧吁具力法 文框制公额后应递注	型钢砼 5 混凝土	5
	● 大振望万斛以应宿法 「武雲隔雲附前阳日比省注 能留注 •	连梁刚度折减系数	1
	◎ 冒堀刑分留反应遵法	中梁刚度放大系数	1.5
		□考虑双向地震作用	
	● 茲田給入的等於把#尾#		
	◎ 沐田和八的寺双线性属性		
	○ 広い明定		
	◎ 田朝水町井田町1111月胡木		

查看设计结果

(1) 在"构件编号"可以查看直接积分时程法计算得有效刚度和阻尼

(2) 结构阻尼比:

在 wzq.out 文件中可以查看 X、Y 方向的各振型的结构阻尼比,如下图,可见 X 方向 23%, Y 向 26%,大于目标结构阻尼比 21%。如果算得的阻尼比比目标结构阻尼比 大较多时,应返回到第三步进行方案的调整,减少消能器构件重新计算,以便得到更加 经济合理的设计方案。

X地震阻尼比 振型号 1	阻尼比 0.234
2 3 4	0.234 0.234 0.234
5 V地震阻尼比	0.234
振型号	阻尼比 0.263 0.263
3 4	0.263 0.263
5	0.263

(3) 层间位移角:

如下图,各层层间位移角均满足抗规最小值 1/550 要求。

+									
				地震作用下	的楼层最大位	移表位移信	息 ,₽		÷
	层	塔	X方向层	X方向层间	X方向层间	Y方向层	Y方向层间	Y方向层间	÷
	号↔	号。	位移比。	位移比。	位移角↔	位移比。	位移比。	位移角。	
	1 @	1 @	1.00	1.00e	1/990 ₽	1.01 @	1.01 ¢	1/866 <i>0</i>	+
	<mark>2</mark> ₽	1 ¢	1.00	1.01 ₽	1/630.	1.01¢	1.02 ₽	1/612¢	+
	3₽	1₽	1.01	1.01e	<mark>1/642</mark> ₽	1.01e	1.02 <i>_{\varphi}</i>	1/649¢	÷
	4 0	1 ø	1.00 ~	1.01e	1/650~	1.01e	1.02¢	1/667.	÷
	5₽	1₽	1.00	1.01e	<mark>1/849</mark> ₽	1.01.	1.02 <i>\varphi</i>	1/8860	÷
	6₽	10	1.00	1.01e	1/1235	1.01	1.03 <i>\varepsilon</i>	1/1298.	+

(4) 位移比:如下图,满足规范要求。

÷								- 23
		地角	震作用规定水	平力下的楼层量	最大位移表位	这移信息。]
层	塔	X方向层	X方向层间	X方向层间	Y方向层	Y方向层间	Y方向层间	
号 ≁	号↩	位移比。	位移比。	位移角↔	位移比。	位移比。	位移角。	
10	1 ø	1.00+	1.000	1/989¢	1.01÷	1.01 <i>e</i>	<mark>1/862</mark> ₽	
2 ₽	1 0	1.00	1.01+	1/627+	1.01 ⁴³	1.02	1/607	-
3₽	1.0	1.00+	1.01+	1/637+	1.020	1.02 ₽	1/641 ₽	1
4.0	1.0	1.00+	1.00 ↔	1/643	1.02.	1.02₽	1/658	4
5₽	1.0	1.00+	1.01.	1/839+	1.02	1.03 ₽	1/874	+
60	1.0	1.00+	1.00+	1/1222+	1.02	1.020	1/1278	÷

(0.20) 2.6 年 17-5-5 19 (21)-12-14(月) 19 (21)-12-14(月) 19 (21)-12-14(月) 19 (21)-14-15 19 (21)-14-15 19 (21)-17 10 (21)-17 17-5-5 19-5	CB.7-05 (0.33) 32 C06-0.4 0-5-19 17-6-0 17-6-0 11710-3 124 12-64 11710-3 124 12-64 11710-3 124 12-64 11710-3 124 12-64 11710-3 124 12-64 11710-3 12-64 12-64 11710-3 12-64 12-64 11710-40 12-64 12-64	0.6-0.4 0.33 32 0.7-8.5 0.4-0.6 1.6 1.6-6-0 1.6-6-0 6.9-10 1.616 1.6-6-0 1.6 9.9-12 1.616 1.6-6-0 1.6 9.9-12 1.616 1.6-6-0 1.6 9.9-12 1.616 1.6-6-0 1.6 0.4-12 1.616 1.6-0-0 1.6 0.4-12 2.4-5 1.6-0-0 1.6	007-0.5 (0.31) 32 621-1.9 00-0.6 17-5-0 17-5-0 17-5-0 10-9-3 121 17-17-14 17-17-14 10-9-5 121 121 121-12-14 10-9-5 121 121 121-12-14 10-9-5 121 121 121-12-14 10-9-5 121 121 121-12-14 10-9-5 121 121 121 10-9-5 121 121 121 10-9-5 121 121 121 10-9-5 121 121 121 10-9-5 121 121 121 121	018-05 (0.22) 0-7-19 13-11-0 04-0-5 0-0-5 0-0-5 0-0-5 0-1-19 0-0-5 0-0-5 0-1-19 0-0-5 0-1-19 0-2-10 0-2-19 0-2-19 0-2-19 0-2-19 0-2-19 0-2-19 0-2-19 0-2-19 0-2-19 0-2-19 0-2-5 0-2-19 0-2-5 0-2-19 0-2-5 0-2-19 0-2-5 0
008-05 17-05 8-10-10 8-10-10 9-0 16-16 16-16 16-16 16-16 16-16 16-16	002-013 002-013 002-013 002-013 002-012 002-012 002-012 002-012 002-012 002-012 002-012 002-013 002-012 000	(0.5-0.5 5-0-1.5 5-0-1.5 1-1-1.5 1-1-1.5 (0.2-0.2 0-0-0 9-1.5-9	8-2-2-2 1-1-1 1-1-1 1-1-1 2-2-2 1-1-	015-05 9-0-19 19-10-11
(0.27) 3.2 61.0-07 3.4 4.5 4.4 82 -5-0 4.4 92 19-1-13	602-603 営业人 0-2-17 16-2-0 ソートー 10-21 22-5 マートー 1-2-13 マートー 1-2-13 マートー 1-2-10 マート 1-2-10 マートー 1-2-10 マートー 1-2-10 マートー 1-2-10 マートー 1-2-10 マート 1-2-10 マートー 1-2-10 マートー 1-2-10 マートー 1-2-10 マートー 1-2-10 マートー 1-2-10 マートー 1-2-10 マートー 1-2-10 マートー 1-2-10 マートー 1-2-10 マートー 1-2-10 マートー 1-2-10 マートー 1-2-10 マートー 1-2-10 マート 1-2-10 1-2-10 マート 1-2-10 1-2-10 マート 1-2-10	0.4-0.3 0.4-0.3 0.4-0.5 5-5-2 0.5-0 5-5-2 0.5-0 1.	$\begin{array}{c} 60.3-0.2 \\ -06-4 \\ -5-6-2 \\ -0.9-0.6 \\ -0.9-0.$	03.3-0.3 8-0-6 2-3-2 VII.0-0.1 6.0-0.7 (0.9) = 5.2 0-8-24 0-8-24 13-12-11 6.0 80,00 12-12-10 6.0 80,00 12-12-10 12-10
の時代では、1982-02 または (028) ニュージング (00-07 (028) ニュージング (00-07 (029) ニュージング (029) ニュージング	1712-8-22 530年 300-300-300 11-22-12 732 00-06 0-7-22 72 92-7-0 11-12-12 72 92-7-0 11-12-12 72 92-10 11-12-12 92-12 11-12-12 92-12 11-12-12-12 11-12-12 11-12-12 11-12-12 1	V12.1-0.0 (2005) 004-0.6 (2005) 007-7-22 (22.7-7-0) 107-11-12 72 (23.727-1-0) 172 (23.727-1-0) 1	1723-01 また。 142-32 000-67 000-06 (0.25) ※注 22 000-67 0-7-22 73 00-67 10-11-12 73 日 第2-11-11 172-101 72-1143-001 日本には 172-1143-001 日本には 173-1143-001 日本には	VT31-02 C 558 (0.1.0.7 1.4 μ 2. 0.0-07 (0.58 c 1 2. 0.4-0.2 51 k1 (8. VT25-0.1 57 c 1 2. VT25-0.1 57 c 1 2. 0.3-0.2 55 μ 2. 0.3-0.2 55
005-05 11-16-5 11-16-10 11-16-	0-0-15 5-5-2 2-5-5	나-0-15 15-U-U 5-5-5 2-5-5 양 명 전 1 - 1 - 1 양 명 1 - 1 - 1 양 1 - 1 - 1 8 - 1 -	4-1-15 5-5-2 5-5-2 5-5-2 5-5-2 5-5-2 5-5-2 5-5-2 5-5-2 5-5-2 5-5-2 5-5-2 5-5-2 5-5-5-5 5-5	0-0-5 5-6-2 5-6-2 5-0-10 1-01-01-01
$\begin{array}{c} & \textbf{32-1-12} \\ & \textbf{5-4-0} \\ \textbf{32-1-12} \\ 32-1-12$	60.3-0.3 0-0-13 5-4-2 0-5-16 0-5-16 0-5-16 0-5-16 0-5-16 0-5-16 0-5-16 0-5-16 0-5-16 0-5-16 0-5-16 0-5-16 0-5-16 12-0-3 12-	MD57-00 SI C3.3432-00 01-013 012-013 012-013 01-013 012-013 012-013	03-0.3 03-0.3 0-0-13 13-0-4 5-1-2 9-11 0-0-6 12 0-0-6 12 0-0-6 12 0-0-6 12 0-0-6 12 12 13-0-4 13 14 14 12 0-0-6 12 14 13-0-4 15-12 13-0-4 14 14 15 14 15 14 16 14 17 13-0	012-012 4-0-5 4-5-2 017-05 014-05 014-9-0 125 125 125 125 125 125 125 125

(5) 配筋:所有楼层无超筋现象。

如果发现某项内容不满足要求或者有超筋现象,请返回到第三步重新调整消能器布 置方案或者调整参数。

满足要求后,此即为最终方案,配筋结果也可作为最终结构设计结果。如果用盈建 科软件通过上面的步骤就可以完成最终设计。

当然,YJK 也支持传统设计流程,即从第三步直接进行第五步,下面继续介绍传统 设计过程。

五、有控模型和目标无控模型小震时程结果校验

经过第三步建立有控模型后,还应对有控模型和目标无控模型进行时程结果的验算 验算目标:多条波直接积分时程法计算,对比各条波及包络的各楼层剪力或倾覆弯 矩(高层结构),满足以下要求:

例如,无控目标模型的结构阻尼比为 20%

 $\frac{20%阻尼反应谱结果}{5%阻尼反应谱结果} = \frac{1 + \frac{0.05 - 0.2}{0.08 + 1.6 \times 0.2}}{1} = 0.625$

依据 JGJ297-2013《建筑消能减震技术规程》4.1.11-3

$$\eta_2 = 1 + \frac{0.05 - \zeta}{0.08 + 1.6\zeta} \tag{4.1.11-3}$$

式中: n2---阻尼调整系数, 当小于 0.55 时, 应取 0.55。

如果 k<1,,则满足设计要求

满足以上要求后,采用无控目标模型进行反应谱法进行最终设计。不满足返回第三 步重新调整有控模型方案。

1、选择地震波

在无控原模型(结构阻尼比为 5%的)中选择满足规范要求的地震波。首先完成无 控原模型的反应谱法计算,然后【弹性时程分析】菜单进行地震波的选择;

			Ey	2		R		F	₫*			μ				<u> </u>
用户波	人工波	地震波	工况定义	工况组合	减震器	计算	节点变形	楼层结果	连接单元	能量曲线	地震时正常	隔震支座	隔震层	隔震送审报告	附加阻尼比	反应谱规范谱
导入	生成	选择			等效参数			-			使用验算		v			-
自定义	地震波		」	妙理		计算			后处理				隔震验	算	减震计算	对比图

在地震波选择-添加地震波中,采用软件提供的自动筛选地震波功能,勾选上以下 选波限制条件。

地震波组合筛	选限制条件		
☑ 有效持续	y时间不小于5f	音基本周期	
☑ 有效持续	卖时间大于15s		
☑ 每条地震	電波基底剪力与	cQC基底剪力	比值B满足
0.	.65 ≤β≤	1.35	
☑ 地震波基	属剪力平均值	与cqc基底剪	力比值入满足
0.	.8 ≤λ≤	1.2	
□ 平台平北	9值与第一周期	邻域平均值筛	选
DT1 0.2	DT2 0.5	Tol 0.35	
考虑各地震波	组合在第 1-3		均反应谱值
与规 (周期点) □ 考虑自动 自定义周期:	范反应谱值的比 支持连续和间W E义周期的平均	ピ値⊓満足 鬲輸入,如1-5, 岐应谱値	8,10)
(周期点	之间采用逗号间	那 鬲,如1.0,1.	5)
0	-		

号	名称	分析方法	是否计算	
1	ArtWave-RH2TG045,Tg(0.45) [0.0]	直接积分法	 Image: A start of the start of	增加
2	ArtWave-RH2TG045,Tg(0.45) [90.0]	直接积分法	V	
3	Chi-Chi, Taiwan-02_NO_2165,Tg(0.43) [0.0]	直接积分法		修改
4	Chi-Chi, Taiwan-02_NO_2165,Tg(0.43) [90.0]	直接积分法	V	
5	Chi-Chi, Taiwan_NO_1184,Tg(0.47) [0.0]	直接积分法		删除
6	Chi-Chi, Taiwan_NO_1184,Tg(0.47) [90.0]	直接积分法	Image: A start of the start	
ч. ж.				重置

选出2条天然波,1条人工波,如下图满足规范要求:

Chi-Chi, Taiwan_NO_1184,Tg(0.47) Chi-Chi, Taiwan-02_NO_2165,Tg(0.43) ArtWave-RH2TG045,Tg(0.45)

前三个周期满足统计意义上相符的要求,如下图:

2、无控原模型进行小震弹性时程方法计算(直接积分法)

选择弹性时程的直接积分法来算。

きまた日		-,
地震波 ArtWave	+RH21G045,1g(0.45) ~
主方向与X轴正向	夹角(度) 0	
时程分析		
分析方法		
○振型叠加法	● 直接积分:	法
100000000000000000000000000000000000000		CO 02
起始时间(s) 0	结果	时间(s) 50.02
时间步长(s) 0.	01 输出间	1 1 1
输出间隔(s) 0.	01	迭代控制参数
HHT和分参数		
a 0	ß 0.25	V 05
	p 0.25	¥ 0.5
瑞利阻尼	ie mi -	
(2)#n	振型A	振型
周期:	0.8515	0.2365
阻尼比:	0.05	0.05
☑质重系数alf	a	0.577499
☑刚度系数be	ta	0.002946

3、有控模型小震时程分析计算

采用弹性时程的直接积分法,对有控结构进行计算。

弱	名称	分析方法	是否计算	
1	ArtWave-RH2TG045,Tg(0.45) [0.0]	直接积分法		增加
2	ArtWave-RH2TG045,Tg(0.45) [90.0]	直接积分法	V	
3	Chi-Chi, Taiwan-02_NO_2165,Tg(0.43) [0.0]	直接积分法	~	修改
4	Chi-Chi, Taiwan-02_NO_2165,Tg(0.43) [90.0]	直接积分法	~	
5	Chi-Chi, Taiwan_NO_1184,Tg(0.47) [0.0]	直接积分法	~	刪除
6	Chi-Chi, Taiwan_NO_1184,Tg(0.47) [90.0]	直接积分法	~	
注: 单i	击"重置"按钮后,程序将根据选择的地震波生成默认的工况	列表		重置

4、有控模型和无控模型小震时程结果对比

有控时程分析结果	21%阻尼反应谱结果
无控时程分析结果	5%阻尼反应谱结果
21%阻尼反应谱结果 _ 1+	$\frac{0.05 - 0.21}{0.08 + 1.6 \times 0.21} = 0.615$
	1 - 0.015

如果 k<1,则满足设计要求

或者说__________< < 0.615 才能满足要求.

其中 21%阻尼模型指无控目标模型,5%阻尼模型是指无控原模型。

不过现行抗震规范要求按能量法求解等效阻尼比,层剪力比方法作为补充说明。 下面按照 k<1 来判断是否满足设计要求。

无控 5%阻尼原模型和无控 21%阻尼目标模型反应谱法楼层剪力对比

82	原模型	目标 21%-	减小量	原模型	目标	减小量
运行	5%-Vx	Vx(kN)	目标/原	5%Vy(kN)	21%Vy(kN)	目标/原
1	5906.75	3903.05	0.661	5715.15	3816	0.668
2	5559.37	3659.04	0.658	5342.69	3551.65	0.665
3	4874.44	3176.66	0.652	4657.12	3063.48	0.658
4	3955.11	2533.43	0.641	3766.46	2435.06	0.647
5	2806.54	1764.14	0.629	2655.23	1686.69	0.635
6	1277.37	790.22	0.619	1191.04	745.76	0.626

(1) 层剪力对比

第一条波:天然波: Chi-Chi, Taiwan_NO_1184, Tg(0.47)

		X 向			Y向	
层数	无控 Vx	有控 Vx	减小量%	无控 Vy	有控 Vy	减小量%
1	4169	2650	0.636	4243	2653	0.625
2	4021	2410	0.599	4089	2511	0.614
3	3594	2308	0.642	3607	2416	0.670
4	3109	2094	0.673	3148	2137	0.679
5	2312	1527	0.660	2300	1549	0.673
6	1151	847	0.736	1101	827	0.751

该波 4、5.	6	层层剪力比值比反应谱的稍大。
---------	---	----------------

、「「」、「」、「」、「」、「」、「」、「」、「」、「」、「」、「」、「」、「」	•
	•

		X 向			Y 向	
层数	无控 Vx	有控 Vx	减小量%	无控 Vy	有控 Vy	减小量%
1	3674	2370	0.645	3760	2534	0.674
2	3441	2172	0.631	3504	2387	0.681
3	3459	2074	0.600	3625	2167	0.598
4	3501	1885	0.538	3508	1911	0.545
5	2864	1393	0.486	2826	1405	0.497
6	1486	792	0.533	1414	763	0.540

一层二层 Y 向楼层剪力稍大于反应谱的比值。

第三条波:人工波:ArtWave-RH2TG045,Tg(0.45)

		X 向			Y向	
层数	目标 Vx	有控 Vx	减小量%	无控 Vy	有控 Vy	减小量%
1	3962	2263	0.571	4020	2350	0.585
2	3590	2073	0.577	3656	2143	0.586
3	3245	1857	0.572	3144	1862	0.592
4	2658	1475	0.555	2548	1432	0.562
5	1782	995	0.558	1705	995	0.583
6	1022	478	0.467	971	475	0.489

所有楼层双向楼层剪力均小于反应谱法计算。

三条波平均值:

		X 向			Y 向	
层数	目标 Vx	有控 Vx	减小量%	无控 Vy	有控 Vy	减小量%
1	3935.017	2461.304	0.625	4007.889	2552.558	0.637
2	3684.153	2218.216	0.602	3749.964	2347.0411	0.626
3	3432.548	2079.6586	0.606	3458.636	2147.9901	0.621
4	3089.212	1817.8557	0.588	3068.113	1826.8414	0.595
5	2319.494	1304.7808	0.563	2276.835	1316.2081	0.578
6	1219.554	705.49887	0.578	1162.25	688.48147	0.592

平均值均满足 k<1 的要求。

根据不同工程审图要求,有时会要求三条波均满足该项要求,也有的平均值满足要

求即可,如果不满足,则需返回到第三步重新进行有控方案的设计;如果满足则可用无 控目标模型进行设计,进行第六步。

本例执行三条波平均值满足要求的判断条件。

此外还提供以下内容查看:

(2) 查看层间位移角

以下是对比结果:

		X 向			Y向	
层数	无控	有控	是否≥1/550	无控	有控	是否≥1/550
1	0.001253	0.000635	是	0.001494	0.000707	是
2	0.002126	0.001097	是	0.002254	0.001039	是
3	0.002214	0.001135	是	0.002158	0.001007	是
4	0.002197	0.001097	是	0.002026	0.000951	是
5	0.001725	0.000809	是	0.001452	0.000696	是
6	0.001322	0.000633	是	0.001156	0.000575	是

从表中可以看到,各条波及包络下,各层位移角均不小于 1/550,满足规范设计要求。

(3) 通过滞回曲线查看小震时最大出力、最大位移

点击"构件内力滞回"中查看,某条波 X 向施加的消能器的滞回曲线。这里选的是 天然波人工波-0 度工况。

0.00000

0.00050

0.00100

0.00150m

确定

-20.000 -40.000 -80.000 -100.000 -120.000 -140.000 -140.000

-0.00150

-0.00100

-0.00050

可以看到连接单元的滞回曲线是否饱满,最大出力多少,比如这根阻尼器,最大出 力在 145kN 左右。

(4) 查看结构能量时程曲线

CCT2165:0度工况

90 度工况:

根据耗能曲线可以估算出阻尼器耗能能力。

六、采用无控目标模型进行最终构件设计-传统方式

采用无控目标模型进行小震反应谱的最终构件设计。

此例即采用结构阻尼比为 21%的目标模型,

进行"生成数据+全部计算",完成最终的构件配筋设计。

七、有控模型和无控模型大震弹塑性结果分析

1、规范规定:

《建筑消能减震设计规程》JGJ297-2013 第 4.1.2 条第 2、3 款:

2.当消能减震结构主体结构处于弹性工作状态,且消能器处于非弹性状态时,可将 消能器进行等效线性化,采用附加有效阻尼比和有效刚度的振型分解反应谱、弹性时程 分析法,也可采用弹塑性时程分析法。

3.当消能减震结构主体结构进入弹塑性状态时,应采用静力弹塑性分析方法或弹塑 性时程分析方法。 《减震消能减震》JGJ297-2013 第 4.1.7 条: 采用静力弹塑性分析方法时应满足下 列要求:

2.结构目标位移的确定应根据结构的不同性能来选择,宜采用结构总高度的 1.5% 作为定点位移的界限值;

此模型总高度为 23m, 总高度的 1.5%为 345mm 做为顶点位移的界限值。

《建筑消能减震设计规程》JGJ297-2013 第 6.4.3 条: "2.消能减震结构的弹性层 间位移角限值不应大于现行国家标准《建筑抗震设计规范》GB50011 规定的限值要求"

当结构遭遇中大地震时,一般建筑主体结构不再处于弹性阶段,而是逐步进入弹塑性阶段,故对于中大震的分析应采用弹塑性分析,本例采用YJK的动力弹塑性分析模块YJK-EP。

2、YJK 弹塑性选地震波及计算参数设定

进入 YJK-EP 模块,进行大震弹塑性时程计算

模	型荷载轴	入 上部	路结构计算	砌体设	进 损	出设计	施工图	设计	预制构件	施工图	钢结构	图	动力弹塑	性分析	静力			转ABAQUS弹	
+							R	$\langle \cdot \rangle$	R	\$	Nor	1500	Ľ,	2	1901	4	1		
用户波	地震波	弹塑性	生成数据	模型显示	特殊构件	数检报告	计算	前处理	后处理	振型	节点时程	楼层时	楼层最	构件损	构件最	构件内	结构能	地震时正常	性能水准 三
导入	选择	计算参数			-		-			显示		程曲线	大响应	伤因子	大内力	力滞回	量曲线	使用验算	*
	参数设	E		模型	处理		计算	枝	鉽						后	处理结果	查询		

选择满足规范要求的3条或者更多的波,这里选择了2条天然波1条人工波也可选 用小震时程计算所用的地震波来算。

	添加地震波	一冊除送	中地震波	起始周期	0.01
_				▲ 终止周期	6
	名称			周期先长	0.02
1	Northridge-01_1	10_956, Tg(0.52)			0.5
2	Northridge-U1_1	10_949, Tg (U. 52)		村正周期(5)	0.5
-	ATTRAVE SECTION			参与振型数	18
				设防烈度	8 (0.3g
				地震水准	罕遇地震
				地震影响系数最大值	1.2
				时程选波参数	
构	阻尼比(%) ≧楼绮—		5	峰值加速度类型: • • • •	GA 🔘 I
	安材料区分	钢	2	主方向峰值加速度(cm/s²)	510
		混凝土	5	次方向峰值加速度(cm/s²)	433.5
		型钢混凝土	5	积分步长(s)	0.02
				2 4 P. M D + 3 P. C + 5 +	

进行弹塑性计算参数设定:

 ■ 山侯望 ■ 周期分析 ▼ 弾性时程分析 ▼ 弾塑性时程分析 ■ 弾塑性时程分析 ■ 単位制 N-m ■ <	村科独臣代表值 设计值 ●标准值 平均值 初始荷载组合 1 ×恒载 + 0.5 ×活载 楼板配筋室 设置楼板配筋率 侧移角 侧移角达到1/5 计算终止	控制参数 □施工模拟次序 ♥ ♥ 考虑结构几何非线性 ■ □ 忽略杆件端部铰接 ♥ 地下室完全嵌固 混凝土受拉强度 ■ 考虑混凝土受拉强度	车梁加密 輸出楼板损伤 示例图	
			确认	取消

◎ 强刚模型	💿 纤维 📃 塑性铰		#	田分段数 	细分	单元最大尺寸(mm
◎ 同反应谱	☑ 考虑套箍效应	梁:	۲	1		1500
 ○ 楼板模型 设置弹性板楼层 	楼板网格划分 ◎ 細分网格 ◎ 三四节占	 柱:	۲	1	Ø	1500
墙元大小	◎ 442/1111 0 110 mm 网格尺寸(mm)	斜杆: 	0	1	Ø	1500
 • 知分垣元 	墙体网格: 2000 楼板网格: 2500	次要构件				
的件单元处理		11 自动忽	部部	分次要构作		146
📃 墙元梁转为框架梁	■ 不出钢筋模型 跨层墙梁分层	◎ 按几位]模型	关系 🔿	按施工图	樹据关系

始荷	载组合值系数		地震波信	息			
1	×恒载 + 0.5	×活载	时程	分析时输入地震加速度的最大值(cm/s2): 510			
7 地震	影皮		积分	时间增量(s): 0.001			
(平向	···· 可地震波		开始	时间(s): 0 ~ 结束时间(s): 30.02			
	☑ X向地震波	☑ Y向地震波					
序	地震波名称	<u>^</u>					
1	Northridge-01_NO	_956,Tg(0.52)					
2	Northridge-01_NO	_949,Tg(0.52)	X回系	数:1 Y回条数:0.85 Z回条数:0.65			
•		•	方向	YJK地震波			
向地	加震波		x	ArtWave-RH3TG055,Tg(0.55)			
🗖 Zri	向地震波 地震波文件	格式样例 显示信息	Y	ArtWave-RH3TG055,Tg(0.55)			
文件	路径:	加载	z				
		确认修改	£	删除单方向地震波			

设置为大震的峰值加速度,8度设防峰值加速度为510cm/s2.

生成数据。

3、将子结构设定成不屈服构件

《消能减震技术规程》JGJ297-2013 第 6.4.2 条:

1.消能子结构中梁、柱、墙构件宜按重要构件设计,并应考虑罕遇地震作用效应和 其他荷载作用标准值的效应,其值应小于构件极限承载力。

2.消能子结构中的梁、柱和墙截面设计应考虑消能器在极限位移和极限速度下的阻 尼力作用

•••••

生成数据后在"特殊构件"中的"屈服/不屈服项"指定所有子结构的梁柱等构件 为不屈服(抗弯、抗剪、轴向可分别设定)构件,材料强度可为标准值或极限值。

进行弹塑性计算。

4、弹塑性分析后,结果查看

弹塑性计算完成后,可以通过耗能曲线查看到消能构件耗能情况,下图为结构在人工波下的耗能曲线:

三条波包络值层间位移角和反应谱法的层间位移角对比如图:

有控模型在大震弹塑性时程的楼层两个方向最大层间位移角最大为 1/116 满足《抗规》(GB50011-2010)表 5.5.5 位移角限值 1/50 的要求。减震结构有较好的抗震性能。 顶层四个角部节点时程位移,截图选取的是三条波中位移最大的。

可见 X 向最大位移为 80.82mm,小于规范规定的限值 345mm。

大震弹塑性消能器的滞回曲线,应查看所有消能器 x 向及 Y 向结果。本文输出地震 波 ArtWave-RH3TG055,Tg(0.55)的滞回曲线结果:

5、大震作用下的消能构件的出力分析

根据滞回曲线查看各条时程波下的各阻尼器最大出力及最大位移,并列表。

例如:某条时程波罕遇地震作用下,结构中布置阻尼器的最大出力及最大位移见表。 此表内容不全,建议用户将所有阻尼器的信息填全。

	X 向				Y方向		
医亏	位置编号	出力(kN)	变形(mm)	医亏	位置编号	出力(kN)	变形(mm)
1	S1D6	245	15.50	1	S1D4	321	17.81
2	S2D6	341	22.84	1	S1D3	330	19.21
3	S3D6	301	17.59	2	S2D4	280	16.98

ART 时程作用下阻尼器出力与位移分析

所有地震波中弹塑性下最大出力为 341.28kn,最大位移为 22.84mm。

大震下消能器最大位移为 22.84mm,1.2 倍为 27.41mm,所选消能器的极限位移 大于 1.2 倍消能器在大震下最大位移要求,满足要求。

6、大震作用下的屈服机制合理性判断

通过 "构件损伤因子" 查看每条波结构损伤发展情况

NT949 时程波下 5s 时刻梁端出现轻微损伤

0s 时刻

30s

40s 时刻

查看各条时程波下各构件及子结构的损伤发展情况,梁端首先有损伤,然后更多的 梁端出现损伤,个别的梁端损伤较大,然后柱端出现损伤,符合强柱弱梁屈服机制,而 子结构未出现极限承载力破坏。屈服机制合理。

满足《建筑消能减震技术规程》中的要求,这表明主体结构在罕遇地震作用下的损 伤状况能够得到有效控制和改善,从而使得整体结构具有良好的抗震性能,更有利于实 现"大震不倒"的设防目标。

注: 消能构件的屈服机制看其滞回曲线。

7、查看子结构构件大震下的配筋结果

在"性能水准"菜单中查看子结构构件的抗剪、正截面配筋结果,此即为大震弹塑 性设计结果,如下图。

抗剪验算结果

正截面验算结果

程序用红色字体起提示作用,表明该构件大震弹塑性配筋比小震弹性配筋大。

第四章 布置粘滞消能器结构中震设计实例

此文中无控模型即未设置消能器的结构模型;有控模型是设置了消能器单元的结构 模型。粘滞消能器是速度相关型消能器,理论上不提供静刚度,只考虑其附加阻尼比。 所以在粘滞消能器减震结构设计时,减震目标体现在使结构的附加阻尼比达到某一个设 计值,从而使减震结构能够达到规范的设计要求。

本节用一实例介绍采用粘滞阻尼器的减震结构的中震设计,计算方法采用弹性时程 按照消能减震规程 6.3.2 计算的附加阻尼比,该方法同样适用于速度型阻尼器减震结构 的小震计算;本例按照导则进行中震设计,属于导则 II 建筑。

本例设计流程如下:

1、对无控模型进行中震反应谱计算;

看是否存在层间位移、配筋超限情况,以方便后续指定减震目标用。此处叫"无 控-原模型",此模型的结构阻尼比采用未考虑消能减震效果前的,比如钢筋混凝土结 构为 5%,钢结构为 2%;

2、无控模型提高结构阻尼比试算,初步确定减震目标;

通过试算来完成减震目标的设定;此模型文件设置为"无控-目标模型";

3、有控模型初步设计;

初步设计消能器的参数和数量,布置在无控原模型中;

4、有控模型反应谱计算。此为第5步的中间过程;

5、有控模型中震振型叠加法(FNA)时程计算附加阻尼比;

一般计算7条波14个工况,取平均值;

6、有控模型和无控目标模型进行时程结果对比验证;

7、采用无控目标模型进行最终结构设计;

8、有控模型进行大震弹塑性分析;

确定阻尼器最大阻尼力及最大位移、及子结构设计。

工程概况

某布置杆式粘滞阻尼器的减震结构,现浇钢筋混凝土框架结构,重点设防,乙类建

筑;建筑4层,结构高度13.5m,设计地震设防烈度7度,设计基本地震加速度为 0.15g,地震分组第二组,场地类别为II类,特征周期0.4s;主体结构阻尼比5%,周期 折减系数0.8。

一、无控模型进行中震反应谱方法计算,得到相应结果

对无消能器模型进行中震的反应谱法计算,参数设置如下:

結构总体信息 ↓箕控制信息	□ 地辰信息 / 地辰信息 设计地震分组: ○ 一 ●) <u> </u>	结构阻尼比(%)			1.2
控制信息	□ 按新区划图计算		 全楼统一 			5
二阶效应	设防烈度	7 (0.15g \backsim	〇 按材料区分		钢	2
分析求解参数 动荷载信息	场地类别	п ~	型钢混凝土	5	混凝土	5
基本参数	特征周期	0.4	- 偶然偏心 □ 老虎偶然偏心 - x	0.05	v	0.05
地震信息	周期折减系数	0.8	- 偶然偏心计算方法:			
目定X景测系数曲线 时域界式随机模拟法	特征值分析参数		 等效扭矩法(传 	统法)		
地震作用放大系数	分析类型	wyd-ritz \sim	○ 瑞利-里兹投影	反射谱法	(新算法))
性能包络设计	○用户定义振型数	9	□考虑双向地震作用			
隔震減震 愛社信申	● 程序自动确定振型数	00	□ 自动计算最不利地震	方向的t	他雷作用	
「「「「「」」」。	质望参与系数之和(%)	30	斜交抗侧力构件方向角	度(0-90)		
科任设计信息 构件设计信息	山 前多 派型 刻 里 150		活荷载重力荷载代表值组合系数 0.5			5
钢构件设计信息 网络设计	□ 按主振型确定地震内力符	枵	加雪影响 系 新 最 大 值		0.	34
材料信息	砼框架抗震等级	二級 ~	用于12层以下规则砼框	架结构薄	弱层。	72
材料参数 钢筋强度	剪力墙抗震等级	二級 ~	验算的地震影响系数载; 	大伹 店	0.	08
地下室信息 左群组合	钢框架抗震等级	二级 🗸	三回地展作用示数展线	咀 1下安的約	±物质量	
组合系数	抗震构造措施的抗震等级			1. 11.	1190以主	
组合表 白宝义工况组合		啮一 级				
鉴定加固	□ 2 種支界力道结构底部加强 □ 级自动提高一级	超区剪力墙顶震等				
关系	□ 地下一层以下抗震构造措	描的抗震等级逐				
	局部模型反应谱法计算竖	间地震时				
	一考虑水平质量					
	结构图已比。					
	该阻尼比参数只用于地震作用	计算,软件提供了	全楼统一阻尼比和按材料	区分阻	<mark>尼比</mark> 两种	计算方
	法。"全楼给—"· 乾性计算	时对整体结构各振	型采用统一的阻尼比(%)	。 " 按末	料区分"	 : 设罟各

查看周期、位移角、位移比等整体指标如下:

表1 非强刚下周期结果

振型号	周期	平动系数(X+Y)	扭转系数(Z)
1	0.6367	0.99(0.00+0.99)	0.01
2	0.5957	0.93(0.93+0.00)	0.07
3	0.5670	0.08(0.07+0.01)	0.92
4	0.1936	0.99(0.00+0.99)	0.01
5	0.1856	0.94(0.94+0.00)	0.06

表 2 地震作用下的楼层最大位移角

层号	塔号 X 方向层间位移角		Y 方向层间位移角		
1	1	1/388	1/366		
2	1	<u>1/299</u>	<u>1/265</u>		
3	1	1/369	1/324		
4	1	1/629	1/552		

层号	塔号	X 方向层位移比	X 方向层间位移比	Y 方向层位移比	Y 方向层间位移比
1	1	1.08	1.08	1.17	1.17
2	1	1.08	1.09	1.18	1.18
3	1	1.08	1.08	1.18	1.18
4	1	1.08	1.07	1.17	1.16

表 3 地震作用规定水平力下的楼层最大位移比

由以上结果可以看出结构 Y 向层间位移角超限,不满足导则 4.3.1 条规定的 II 建筑 设防地震下框架结构层间位移角限值 1/300 的限值要求,需要调整方案。

非强刚下的配筋结果: 1~3 层中柱框架柱节点核芯区抗剪超限; 1~2 层 Y 向第二跨 框架梁最大配筋率超限,以1 层配筋为例,超限情况见下图。

二、无控模型提高结构阻尼比计算,确定减震目标

对该结构采用减震技术,提高其抗震性能。

由第一步对无控模型的结果可以看出,无控模型中震反应谱结果显示层间位移角不 满足规范要求,且下部楼层部分构件超筋,减震方案考虑采用杆式粘滞阻尼器,为结构 提供附加阻尼比,从而减小地震作用。 将结构总阻尼比设置为 9.5%,即考虑阻尼器为结构提供 4.5%的附加阻尼比,进行 结构计算、设计,计算参数设置如下:

1920年68 · 算控制信息 控制信息	设计地震分组: ○一 ●	DE OE	- 结构阻尼比(%) ● 全楼统—			9.5
 限 原 数 一 防 効 向	□ 按新区划图计具 设防列度	7 (0 150 🗸	〇 按材料区分		钢	2
二所 ^{然位} 分析求解参数 荐群信息	场地类别	II v	型钢混凝土	5	混凝土	5
四新原表 基本参数 <mark>震信息</mark> 地震信息	特征周期 周期折减系数	0. 4	- 偶然偏心 ☑ 考虑偶然偏心 — X - 偶然偏心计算方法:	0.05] ¥	0.05
目定入影响示数曲线 时域显式随机模拟法 地震作用放大系数 性能设计	特征值分析参数 分析类型	WYD-RITZ ~	 ●等效扭矩法(传统) ○瑞利-里兹投影) 	统法) 反射谱法	(新算法)	
性能设计 性能包络设计 隔震减震 设计信息 活荷载信息 构件设计信息	 ○用户定义振型数 ●程序自动确定振型数 质里参与系数之和(%) □最多振型数里 	9 90 150	 □考虑双向地震作用 □自动计算最不利地震 斜交抗侧力构件方向角」 	方向的地 夏(0—90)	震作用	
构件设计信息 钢构件设计信息 络设计 料信息 材料参数 钢筋强度	□ 按主振型确定地震内力符 砼框架抗震等级 剪力墙抗震等级	日 日 二級 → 二級 →	活荷载重力荷载代表值。 地震影响系数最大值 用于12层以下规则砼框。 验算的地震影响系数最。 坚向地震作用系数底线	組合系数 架结构薄 大値 盾	0.! 0.: 弱层 0. 0.1	5 34 72 08
下室信息 载组合系数 组合系数 自定义工况组合 定加固 配式	 納框架抗震等级 抗震构造措施的抗震等级 提高一级 隆1 「握支剪力遺结构底部加强 「毀自劫提高一级 」地下一层以下抗震构造指 「层降低及抗震措施四级 局部模型反应谱法计算竖 考虑水平质重 	二级 ~ 低一级 超区剪力墙抗震等 i 施的抗震等级逐 间 地震时	□地震计算时不考虑地	下室的结	构质量	

计算完成后,查看位移角、位移比等整体指标如下:

层号	塔号	X 方向层间位移角	Y 方向层间位移角
1	1	1/489	1/465
2	1	1/378	1/337
3	1	1/468	1/413
4	1	1/798	1/704

地震作用下的楼层最大位移角 表・

表 2 地震作用规定水平力下的楼层最大位移出

层号	塔号	X 方向层位移比	X 方向层间位移比	Y 方向层位移比	Y 方向层间位移比
1	1	1.08	1.08	1.17	1.17
2	1	1.08	1.09	1.18	1.18
3	1	1.08	1.08	1.18	1.18
4	1	1.08	1.07	1.17	1.16

由以上结果可以看出结构 Y 向层间位移角超限的情况已经消失,结构指标均已满足 要求。

非强刚下的配筋结果: 1~4 层构件配筋简图如下,原有局部梁柱构件超筋的情况已 经消失。

_	P	ヨコ	厺
_	云	HC	月刀

101

四层配筋

可见,将结构总阻尼比设置为 9.5%后,结构设计指标及配筋满足规范要求,此模型称为无控目标模型;设定阻尼器为结构提供 4.5%的附加阻尼比的减震目标,下一步

布置阻尼器,建立有控模型,进行有控模型附加阻尼比的计算。

三、建立有控模型-初步设计

1、减震方案

按照"整体均匀、局部集中"的原则布置粘滞阻尼器。 阻尼器采用人字形布置,杆式粘滞阻尼器,阻尼器参数: 阻尼系数 $C = 400kN \cdot (s/m)^{\alpha}$,阻尼指数 $\alpha = 0.2$; 拟在 1~2 层下列位置布置共 4 组,X向 2 组,Y向 2 组,位置见下图:

拟在 3~4 层下列位置布置共 2 组, X 向 1 组, Y 向 1 组, 位置见下图:

2、模型中建立阻尼器斜杆

建模时将消能器按斜杆构件建立,材料类别一般设置为 5(钢构件)即可,因为在 前处理会将其指定成阻尼器单元,阻尼器单元会自动替换建模时的斜杆构件。

]	3	Л		1	0	P	1	17	H	\square			!	1
1	主 梁	墙	墙洞	斜墙 隅	墙埴充墙	斜杆	次梁	绘墙线	绘梁线	斜梁	加腋	变截面梁	楼梯	拾取	定义
					-		*		-	•		-	*	布置	刷
_								构件	輸入		_				
×	添加	修改	删除	显示	清理	斜撑布	置参数	文		×					
ю	1 1	顶底	当前层	去重	着色										
в	席号	形狀	参数	7		1號x	定位偏	移(mm)	0						
	1	同等	200	*196		1號y	定位偏	移(mm)	0						
		MB	200	100		1 端板	示高(mm	.)	0						
										医高同					
						2读耑x [:]	定位偏	移(mm)	0						
															×
	<u>)</u>											1.55			
								名称				内	容		
								日斜指	参数						
								17日	1尖型 3站回古2	Z (==)	ъ	8	o Be		
			/		-			环形	の回直に	Z(mm)	н	18	6		- 1
		,						材料		T (mm)		5:	钢		- 1
		/	/	-			28	名称	ζ.						
		1	1		1 1										
			-			н									
		1	1		11	ш									
		1	1		/ /										
		/		\rightarrow	-		-9								
			-												
		1		B	Î										
4) e		12553											

VFD1 斜杆截面定义

3、设定粘滞阻尼器参数、布置阻尼器

在特殊支撑的"设置连接属性"选择"阻尼器 maxwell",选择已定义的 VFD1, 并布置到支撑构件上。

VFD1	类型:	阻尼器 有效刚度1	麦克斯韦 32. 有效阻尿	~ 副 非线性	國度、	,阻尼	、阻尼指	数	
	⊡ 1/1	ษณ/m. ษณ m 0	VredCF(bN s		K(1-N/m) 80000	C(LN =/	(m.) exp 0.2		
	U2	0	0		0	0	0		
	□ \u0303	0	0		0	0	0		
		0	0		0	0	0		
		0	0		0	0	0		
		0	0		0	0	0		
		0	0		U	U	U		
	明除 SG 抗要 材料 等级 强度 两端固接	· 70 重要性性 系数 设 ・ 设置道 (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2		↓ 打开 超配 册 送配 册	数据库 ↓				
	HTM SG 抗喪 功規 安 勝 国国接 定义连属 能		田 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	↓ 打开 超配 動 院課程放 院開属性 24円別度	数据库 ↓	· 描定义 楼易 件			
	附除		田 田 御祭 人 松 御祭 人 松 御祭 人 松 秋	◆ 打开 超配 號 環構故 時構成 2010 2010 2010 2010 2010 2010 2010 201	数据库 ↓ 除 复制 多 • 节点自重 • ፳ 厘盖关键构 • 钢支撑限值				
	冊//余 SG 抗果 材料集 // 小月 方法果 初建度 // 小月 方法用法 全球回接 全球回接 定义连接黑能 法用字		田 田	◆ 打开 超配 型 影数 "議释放 院降釋放 "能降釋放 "能降釋放	数据库 ↓				
	●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●	ア0 重要性 ・ <th>田 記 減福栗 人防 注 遅度 (二) ・ 一・ 一般 全接展 (二) ・ 一般 全接展 (二) ・ 一般 全接展 (二) ・ 一般 四尼指数</th> <th>◆ 打开 超配 ● 認配 ● 演編程 注)消開度</th> <th>数据库 ↓</th> <th></th> <th>确定 一部では、 品属性 一般である 一のである 一のでの 一の 一の 一の 一の 一の 一の 一の 一の 一の 一</th> <th></th> <th></th>	田 記 減福栗 人防 注 遅度 (二) ・ 一・ 一般 全接展 (二) ・ 一般 全接展 (二) ・ 一般 全接展 (二) ・ 一般 四尼指数	◆ 打开 超配 ● 認配 ● 演編程 注)消開度	数据库 ↓		确定 一部では、 品属性 一般である 一のである 一のでの 一の 一の 一の 一の 一の 一の 一の 一の 一の 一		
	₩/// SG 抗要 板型 定 以 法 限 二 一 (()) ()) () () () () () () ()) ()) () ()) ()) ()) ()) ()) ())) ())) ())) ())) ()))) ())) ())))) ())))) ()))))))))))))	文 重要性性	田 	◆ 打开 超配 册 證報故 時候釋故 門時属性 24件例度	数据库 ↓ 除 复制 • 节点目重 • 初点可重 • 初点文译喋值	中 中 中 中 中 中			
	時間条 SG 資料 抗東 張慶 東京画面接 全信幅面接 定义连接黑 (以修/m) 10000 0	文 重要性性 全 一 後 一 一 一 一 一 一 一 一 一 一 一 一 一	田 	◆ 打开 超配 ● 透報故 時间属性 2/4例度	数据库 ↓ 除 复制 · 节点目重 · 初点互運機構	「 海定义 様 件 ・ 死 の	确定 一部では、一部では、一部では、一部では、一部では、一部では、一部では、一部では、		
	時間余 SG 「「「」」」 抗東 現長 東原国接 全幅回接 全幅回接 全地現意 建築 100 2 200 0 0 0 0	文 重要性性 生 多数 设置 一 一 一 一 一 一 一 一 一 一 一 一 一	田 	◆ 打开 超配 ● 透報 防除释放 防除释放 内的属性 2/4例度	数据库 ↓ 除 <u>2</u> 章 章 章 章 章 章 章 章 章 章 章 章 章	中 中 中 中 中 中			
	時間余 SG 「「」」 抗東 現長 本层国接 全幅回接 全幅回接 2.2.3.4.5.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6	文 重要性性 生 多数设置 ・ 修改 ・ 影 大 初	田 	◆ 打开 超配 ● 透報 時時程放 時時程 次件例度	数据库 ↓ 除 <u>2</u> 第 5 5 5 5 5 5 5 5 5 5 5 5 5	「 海定义 様 件 ・ 死 の			
添加 深輝 添加 深輝 冷砾地 秋平转換 角柱 時時柱 两端校接 自拉杆 上端校接 自正杆 下端校接 東田尼器麦克斯韦 有效明度12 有效明度12 有效明度12 東次州、以北、小女女社区(以北、大小) 0 11 0 12 0 13 0 14 0 152 0	時間余 SG 「「「」」」 抗要 通貨 市業の調査 二 市業の調査 二 市業の調査 二 空気 二 「「」」」 二 「」」 二 「」 二 <trtr> 「」 二 <</trtr>	次の 点 重要性 生 重要性 生 ・愛賀政 ・ ・ 修改政 ・ 影政 ・ 第二 ・ 1 ・ 1 ・ 1 ・ 1 ・ 1 ・ 1 ・ 1 ・ 1 ・ 1 ・ 1 ・ 1 ・ 1 <t< td=""><td>田 </td><td>◆ 打开 超配 册 證解釋放 門時属性 2/件例度</td><td>数据库 ↓ 除 复制 。 · 节点目重 · 初三支澤琛値</td><td>「 構定义 協調 (編 (編) (編) (編) (編)) (編))) (編)))))))))))))</td><td></td><td></td><td></td></t<>	田 	◆ 打开 超配 册 證解釋放 門時属性 2/件例度	数据库 ↓ 除 复制 。 · 节点目重 · 初三支澤琛値	「 構定义 協調 (編 (編) (編) (編) (編)) (編))) (編)))))))))))))			

四、有控模型中震振型叠加法(FNA)时程计算附加阻尼比

进入弹性时程模块,采用有控模型进行振型叠加法(FNA)时程计算,得到有控模型 的等效附加阻尼比;一般选取7条波,分别进行两个方向共14个工况的时程计算,得 到每条波在两个方向的附加阻尼比,然后X向取7条波0度工况的平均值作为X向的附 加阻尼比,Y向取7条波90度工况的平均值作为Y向的附加阻尼比,最后取两者小值 作为最终的附加阻尼比。

1、选波

选波方法可参见书籍《减隔震建筑结构设计指南与工程应用》2.3.3 节第 3 项内容, 本例采用有控模型按"线性时程选波";

首先进行有控模型反应谱计算,阻尼比采用结构固有阻尼比,即 5%,参数设置见 下图:

构总体信息 算 控制信息 控制信息	1 地震信息 > 地震信息 设计地震分组: ○ - ●	结构阻尼比(%) ◉全楼统一			5		
刚度系数 二险效应	设防列度	7 (0 15 ~ ~	○按材料区分		钢	2	
分析求解参数		1 (0.15g 🗸	型钢混凝土	5	混凝土	5	
荷载信息	场现尖列	II ~	偶然偏心				
	特征周期	0.4		0.05	Y	0.05	
地震信息 安宁以影响系数曲线	周期折减系数	0.8					
自定义象响系数曲线 时域界式随机模拟法	特征值分析参数		●等效扭矩法(传	统法)			
地震作用放大系数	分析类型	wyd-ritz \sim	○瑞利─里兹投影	反射谱法	(新算法)		
性能设计 性能句络设计	○用户定义振型数	9	□老市辺向地帯作用				
隔震減震	● 程序自动确定振型数						
计信息 荷载信自	质量参与系数之和(%)	90		历回的地	的震作用		
件设计信息	□ 最多振型数里	150	150 科交抗侧刀构件方向角度(0-90)				
构件设计信息 泡物件设计信息		活荷载重力荷载代表值组合系数 0.5			5		
的19月1日息 络设计	日接王振型确定地震内力を	大	地震影响系数最大值				
	<u> </u>	二级 ~	用于12层以下规则砼框	架结构薄	弱层 0.	72	
М科参数 钢筋强度	剪力墙抗震等级	二级 ~	短月的地 <u>辰</u> 京卿杀奴取 収合地委作用专数房建	入沮 店	0	08	
下室信息	钢框架抗震等级	二级 ~	立回地展作用が数は浅	旧 1丁合650	+45 65 63		
铁组合 组合系数	- 抗震构造措施的抗震等级		□ 地震计算时不有處现	小五印诗	前狗肉里		
组合表	□提高一级 □降1	低一级					
目定义上况组合 定加固 象式	 ✓ 框支剪力遺结构底部加强 ✓ 级自动提高一级 ✓ 地下一层以下抗震构造措 ✓ 层降低及抗震措施四级 	区剪力墙抗震等 施的抗震等级逐					
	□局部模型反应谱法计算竖 □考虑水平质量	向地震时					
	结构阻尼比: 该阻尼比参数只用于地震作用 法。"全楼统一":软件计算	计算,软件提供了 时对整体结构各振	全 接续一阻尼比和按材料 型采用统一的阻尼比(%)	<mark>▼区分阻</mark> 。"按林	<mark>尼比</mark> 两种 排区分"	计算方 : 设置?	

	添加地震波	删除这	地中地震波	起始周期	0.01
	名称		^	终止周期	6
1	Big Bear-01_NO_9	20, Tg(0.38)		周期步长	0.01
2	Little Skull Mtn	, NV_NO_1746, Tg(0.	. 41)	特征周期(s)	0.4
3	Livermore-02 NO	224, Tg(0. 41)		参与振型数	5
4	 Chi-Chi. Taiwan-	02 NO 2162.Tg(0.4	42)	设防烈度	7 (0.15g ~
5	ArtWaye-BH2TG040	. Te(N 4N)		地震水准	设防地震 🗸
~		m /o .o`	~	地震影响系数最大值	0.34
< +160			>	时程选波参数	
白相郎	且尼比(%) ≧襟綺—		5	峰值加速度类型: ④ 1	PGA 🔿 EPA
○ ① 抄	安材料区分	钢	2	主方向峰值加速度(cm/s²)	150
		混凝土	5	次方向峰值加速度(cm/s²)	0
		型钢混凝土	5	积分步长(s)	0.02
tan	话框参数设罟口县编	1.他震波筛洗过程,	时程分析使用	☑线性时程选波	
豪新	请在计算参数对话框	中设置。	ATT D M KOG	读取前处理地震;	参教

反应谱计算完成后,进入弹性时程模块,地震波选择中设置好选波参数,见下图。

点击添加地震波,选择"自动筛选符合规范要求地震波组合",进行程序自动选波。

动筛选地震波组合参数对话框		×
读入上次计算参数设置与统计结果	保存参数设置与计算统计结果	地震波组合筛选限制条件 夕 有效持续时间不小于5倍基本周期
● Y3K地震波库 0.40 参加备选天然波 Big Bear-01_NO_903,Tg(0.41) Big Bear-01_NO_920,Tg(0.40) Big Bear-01_NO_920,Tg(0.40) Big Bear-02_NO_1899,Tg(0.40) Big Bear-02_NO_1899,Tg(0.40) Chalfant Valley-02_NO_549,Tg(0.43) Chalfant Valley-02_NO_552,Tg(0.42) Chalfant Valley-02_NO_552,Tg(0.42) Chalfant Valley-02_NO_552,Tg(0.43)	○用户自定义波 Big Bear-01_NO_903,Tg(0.41) Big Bear-01_NO_910,Tg(0.40) Big Bear-01_NO_920,Tg(0.38) Big Bear-01_NO_922,Tg(0.41) Big Bear-02_NO_1874,Tg(0.41) Big Bear-02_NO_1874,Tg(0.43) Borrego Mth_NO_40,Tg(0.40) Chalfant Valley-02_NO_552,Tg(0.4:	○ 「秋村泉村同人」」 ○ 每条地震波基底剪力SCOC基底剪力比值P满足 0.65 ≤β≤ 1.35 ・ ○ ・ ○ ≤A≤ 0.3 ≤A≤ □ 平台平均值与第一周期邻城平均值筛选 DT1 0.2 DT2 0.5 ては 0.35 考虑各地震波组合在第 1-2 ○ い方の周期的平均反应谱值
Chalfant Valley-04 NO_563,Tg(0.38) Chi-Chi, Taiwan_NO_1205,Tg(0.40) Chi-Chi, Taiwan-02_NO_2162,Tg(0.42) Chi-Chi, Taiwan-02_NO_2170,Tg(0.41) Chi-Chi, Taiwan-02_NO_2182,Tg(0.41) Chi-Chi, Taiwan-02_NO_2183,Tq(0.40) × <	Chalfant Valley-04, NO_563,Tg(0, 3) Chi-Chi, Taiwan_NO_1205,Tg(0, 40) Chi-Chi, Taiwan-02_NO_2162,Tg(0, Chi-Chi, Taiwan-02_NO_21270,Tg(0, Chi-Chi, Taiwan-02_NO_2182,Tg(0, Chi-Chi, Taiwan-02_NO_2183,Tq(0, ✓	与规记反应"首组打化值n两正 (周期点支持连续和间隔输入,如1-5,8,10)] 考虑自定义周期的平均反应谱值 自定义周期: (周期点之间采用逗号间隔,如1.0,1.5) 0.8] ≤n≤ 1.2
ArtWave-RH1TG040,Tg(0.40) ArtWave-RH2TG040,Tg(0.40) ArtWave-RH3TG040,Tg(0.40) ArtWave-RH4TG040,Tg(0.40) ArtWave-RH4TG040,Tg(0.40) 剛盼	¥=> ArtWave-RH1TG040,Tg(0.40) ArtWave-RH2TG040,Tg(0.40) ArtWave-RH3TG040,Tg(0.40) ±=> !=>	
地震波组合参数设置 备选地震波总数 81 人工波数	2 ~ 天然波数 5 ~	选择地震波组合
		确定即消

选择以下5条天然波、2条人工波的地震波组合,进行后续时程计算。

2、在弹性时程模块中选择 FNA 法进行时程计算

工况定义及工况信息(以 ArtWave-RH1TG040, Tg(0.40)[0.0]工况为例)如下:

号	名称	分析方法	是否计算	^	
1	ArtWave-RH1TG040,Tg(0.40) [0.0]	振型叠加法			増加
2	ArtWave-RH1TG040,Tg(0.40) [90.0]	振型叠加法	~		
3	ArtWave-RH2TG040,Tg(0.40) [0.0]	振型叠加法	~		修改
4	ArtWave-RH2TG040,Tg(0.40) [90.0]	振型叠加法			
5	Big Bear-01_NO_920,Tg(0.38) [0.0]	振型叠加法	~		删除
6	Big Bear-01_NO_920,Tg(0.38) [90.0]	振型叠加法	~		
7	Chi-Chi, Taiwan-02_NO_2162,Tg(0.42) [0.0]	振型叠加法	~		重罟
0	Chi Chi Taiwan 02 NO 2162 Ta(0 42) 100 01	t⊑刑,费+n≷±	5	~	
注: 单词	击"重置"按钮后,程序将根据选择的地震波生成默认的工况	列表			

地震作用		
地震波 ArtWay	e-RH1TG040,Tg(0.40)	· · · · · · · · · · · · · · · · · · ·
主方向与X轴正向	司夹角(度) 이	
村程分析		
分析方法		
◉ 振型叠加法	○ 直接积分	去
起始时间(s) 0	结束的	时间(s) 30.02
时间步长(s) 0	輸出値	福步数 1
输出间隔(s) 0	.01	读代控制参数
		Change 1, 354 and 75 of an P. 454 P.
100 快力愛致	B 0.25	v 0.5
• <u>•</u>	P	1 200
瑞利阻尼	指展开Ⅱ△	振开唱
周期:	0.636666	0.567045
阻尼比:	0.05	0.05
▽ 质暈 系数al	fa	0,521985
		0.004772
·····································	eta	0.004775

工况组合定义如下,主方向峰值加速度按照中震下输入,次方向及竖方向峰值加速

度设为 0:

10 X	但载系数	活载系数	峰值加速度类型	主方向峰值加速度(cm/s2)	次方向峰值加速度(cm/s2)	竖方向峰值加速度(cm/s2
	0.00	0.00	PGA	150.00	0.00	0.00

时程计算完成后得到各工况的楼层剪力、附加阻尼比等结果。

3、附加阻尼比结果

后处理中,点击下图中"附加阻尼比",弹出文本,其中包括每个工况的附加阻尼

比计算过程,最后输出 X 向平均值及 Y 向平均值:

现将文本中结果统计为下表:

波序号	波名	附加阻尼比	
		X 向	Y 向
1	ArtWave-RH1TG040,Tg(0.40)	4.64%	4.54%
2	ArtWave-RH2TG040,Tg(0.40)	4.83%	4.15%
3	Big Bear-	4.95%	4.34%
	01_NO_920,Tg(0.38)		
4	Chi-Chi, Taiwan-	4.38%	4.52%
	02_NO_2162,Tg(0.42)		
5	Chi-Chi, Taiwan-	4.75%	4.61%
	02_NO_2170,Tg(0.41)		
6	Little Skull	4.46%	5.12%
	Mtn,NV_NO_1746,Tg(0.41)		
7	Livermore-	4.37%	4.87%
	02_NO_224,Tg(0.41)		
平均值		4.63%	4.59%

可见,附加阻尼比平均值 X 向为 4.63%,Y 向为 4.59%,取两者小值为 4.59%,可 见满足之前设定的提供 4.5%的附加阻尼比的减震目标,满足要求。如果不满足要求,需 要返回第 3 小节调整阻尼比布置方案,直至满足减震目标要求。

五、有控模型和无控目标模型进行时程结果对比验证

采用含阻尼器的有控模型(模态阻尼取主体结构固有阻尼比 5%)按照第四小节中选 出的 7 条波得到的楼层剪力平均值,与无控目标模型(附加阻尼比 4.5%,模态阻尼取总 阻尼比 9.5%)的反应谱楼层剪力进行比较,如果无控目标模型反应谱剪力与有控模型时 程剪力平均值接近,则证明采用的附加阻尼比是合适的。

X 向,有控模型 7 条波楼层剪力平均值与无控目标模型反应谱的对比如下图:

Y向,有控模型7条波楼层剪力平均值与无控目标模型反应谱的对比如下图:

层号		X 向楼层剪	カ	Y 向楼层剪力				
	反应谱	FNA 时程	时程/反应谱	反应谱	FNA 时程	时程/反应谱		
1	6434	6395	0.99	6052	5631	0.93		
2	5725	5762	1.01	5393	5135	0.95		
3	4389	4363	0.99	4155	3940	0.95		
4	2457	2668	1.08	2358	2494	1.06		

2	X 向及 V 向.	7 冬波楼 2 前力 平均 信 的 对 比 数 信 の 下 表・	
1			

由上图可知,除顶层外其余楼层反应谱剪力均接近或大于时程剪力平均值,满足要 求,说明采用的 4.5%的附加阻尼比是合适的。

六、采用无控目标模型进行最终结构设计

采用无控目标模型(附加阻尼比 4.5%,总阻尼比 9.5%)进行最终结构计算及设计即可。

七、有控模型大震弹塑性时程分析

本小节内容与第三节中的第七小节类同,不再赘述。

八、粘滞阻尼器减震结构与 etabs 的案例对比

1、工程概况

对比项目地上 6 层,无地下室,首层结构计算高度 4.2m,其余各层结构计算高度 均为 3.3m。结构计算总高度 20.7m,抗震设防烈度 8 度 0.3g,设计地震分组为第二组, 场地类别 II 类,结构类型采用钢筋混凝土框架结构,为了减小结构在大震作用下不发生 严重损坏,在结构中增加粘滞阻尼器来耗散输入结构中的地震能量,起到保护结构的作 用。结构计算模型如图 1.1 所示。阻尼器布置如图 1.2 所示。

在 YJK 与 ETABS 分析模型中,梁、柱单元采用空间杆系单元模拟,悬臂墙采用壳 单元模拟。粘滞阻尼采用 Maxwell 模型模拟。阻尼器参数如表 1.1 所示。

YJK 模型

ETABS 模型

图 1.1 结构计算模型

a) A 轴、D 轴阻尼器立面布置图

b)1轴、6轴阻尼器立面布置图

C) 2~6 层阻尼器平面布置图

图 1.2 阻尼器布置图

表 1.1 粘滞阻尼器计算参数表

类型	阻尼指数	阻尼系数	最大行程	最大阻尼力
		kN*(s/mm)α	(mm)	(kN)
1	0.25	50	±30	600

2、反应谱结果对比

通过反应谱计算分别对 YJK 与 ETABS 软件计算得到的结构质量、周期、楼层剪力进行对比,对比结果如下表 2.1~2.3 所示,反应谱楼层剪力曲线对比图如图 2.1 所示。 表中误差的算法为: |YJK-ETABS|/YJK*100%。

表 2.1 结构模型质量对比

YJK(Ton)	ETABS (Ton)	误差(%)
4888.809	4888.811	0.00

表 2.2 结构模型周期对比

阶数	YJK (s)	ETABS(s)	误差(%)
1	0.890	0.893	0.337
2	0.848	0.851	0.354
3	0.786	0.790	0.509

层号	,	YJK(kN)	ET/	ABS(kN)	误差	皇(%)
	X 向	Y 向	X 向	Y 向	X 向	Y 向
STORY6	1549.51	1512.85	1534.93	1501.37	0.94	0.76
STORY5	2716.20	2623.06	2737.59	2649.09	0.79	0.99
STORY4	3573.90	3426.77	3622.57	3481.38	1.36	1.59
STORY3	4246.93	4061.19	4305.58	4127.26	1.38	1.63
STROY2	4838.78	4625.83	4913.09	4708.00	1.54	1.78
STORY1	5255.41	5025.29	5336.28	5113.78	1.54	1.76

表 2.3 反应谱结构模型楼层剪力对比

注: 阻尼比取 5%的楼层剪力结果

图 2.1 反应谱楼层剪力曲线对比图

通过上述对比结果可知,YJK 与 ETABS 软件反应谱计算结果的周期、结构质量、 楼层剪力均在 5%以内,两款软件计算结果非常接近。由此可以认为两款软件反应谱计 算结果正确,能真实的反应结构的基本特性。

3、多遇地震时程计算结果对比

1. 地震动选取

关于地震动的选择及原理此处不进行详细介绍,具体阅读相关规范要求,对于粘滞 阻尼器计算附加阻尼比一般建议选取 7 条地震动(2 条人工波+5 条天然波)进行计算。 本案例只是为了对比两款软件的计算结果,此处选取一条人工波进行快速非线性(FNA) 时程计算分析,对比两款软件时程结果下的楼层剪力,结构顶点位移以及附加阻尼比等 结果。人工波时程曲线如图 3.1.1 所示。

图 3.1.1 地震动时程曲线

2. 时程工况下楼层剪力结果对比

将上述选择的人工波分别导入 YJK 软件和 ETABS 软件进行快速非线性时程分析,两 款软件得到的楼层剪力如表 3.2.1 所示,时程工况楼层剪力曲线对比图如图 3.2.1 所示。 表中误差的算法为: |YJK-ETABS|/YJK*100%。

层号	Y.	JK(kN)	ETA	ABS(kN)	误差	皇(%)
	X 向	Y 向	X 向	Y 向	X 向	Y 向
STORY6	722.17	712.57	706.86	717.63	2.12	0.71
STORY5	1472.49	1414.16	1471.81	1433.06	0.05	1.34
STORY4	2132.85	2124.65	2125.33	2161.35	0.35	1.73
STORY3	2802.10	2743.60	2850.90	2778.10	1.74	1.26
STROY2	3459.64	3369.95	3521.46	3408.52	1.79	1.14
STORY1	4372.30	4321.11	4436.26	4370.38	1.46	1.14

表 3.2.1 时程工况下结构模型楼层剪力对比

图 3.2.1 时程工况楼层剪力曲线对比图

通过计算结果数据可知,YJK 与 ETABS 时程工况下楼层剪力误差均在 5%以内,两 款软件时程计算的楼层剪力非常接近,时程计算结果正确。

3. 时程工况下结构顶点位移对比

选取结构模型右上角一点(图 3.3.1 红色圈所示),进行两款软件时程工况下结构 顶点位移对比。对比结果如图 3.3.2、图 3.3.3 所示。

ETABS 模型拾取点示意图

YJK 模型拾取点示意图

图 3.3.1 顶点位移计算选取点示意图

图 3.3.2 X 方向顶点位移时程曲线对比图

ETABS 计算的 X 方向结构顶点位移最大值 18.941mm,YJK 计算的 X 方向结构顶 点位移最大值 18.875mm,两者相差 0.35%。

图 3.3.3 Y 方向顶点位移时程曲线对比图

ETABS 计算的 Y 方向结构顶点位移最大值 19.807mm,YJK 计算的 Y 方向结构顶 点位移最大值 19.756mm,两者相差 0.26%。

4. 时程工况下阻尼器耗能结果对比

选取结构模型中编号为 26 号的阻尼器(图 3.4.1 绿色圈所示),进行两款软件 X 方向时程工况下阻尼器的滞回曲线进行对比,滞回曲线如图 3.4.2 所示。

图 3.4.1 阻尼器滞回曲线选取点示意图

ETABS 计算结果

YJK 计算结果

图 3.4.2 26 号阻尼器 X 方向时程工况滞回曲线

从阻尼器的滞回曲线可以看出,YJK 与 ETABS 计算结果下阻尼器的滞回曲线形状 相似,滞回曲线相对比较饱满,阻尼器在小震作用下已经可以发挥耗能作用。

4、附加阻尼比计算

计算附加阻尼比的方法较多,常用的有规范方法、时程累计能量比法、响应衰减法、 减震系数法,平均减震系数法等。本案例采用时程累计能量比法计算附加阻尼比,通过 快速非线性时程分析得出结构模态阻尼耗能和阻尼器耗能,并对两款软件计算的附加阻 尼比做了对比。

累计能量比法计算附加阻尼比的公式如下式所示。

$$\xi_{\rm a} = \frac{W_{\rm a}}{W} \xi$$

式中: ξ_a:阻尼器附加阻尼比

W: 阻尼器时程累计耗能

W: 结构主体模态阻尼耗能

ξ: 结构主体初始固有阻尼比

时程 X 工况下 YJK 与 ETABS 能量曲线如图 4.1 所示,时程 Y 工况下 YJK 与 ETABS

能量曲线如图 4.2 所示:

a) ETABS 能量曲线

b) YJK 能量曲线

a) ETABS 能量曲线

b) YJK 能量曲线

图 4.2 时程 Y 工况下能量曲线

提取两款软件各个时刻的模态阻尼耗能和阻尼器耗能,计算不同时刻阻尼器提供给 结构的附加阻尼比,各个时刻阻尼器附加给结构的附加阻尼比时程曲线如图 4.3、4.4 所 示。

图 4.4 Y 向工况附加阻尼比时程曲线

从附加阻尼比时程曲线的走向可以看出,在地震动作用下阻尼器附加给结构的附加 阻尼比从 2.5s 左右开始,均呈现出先迅速增大后缓慢减小最终趋于稳定过程。YJK 和 ETABS 附加阻尼比时程曲线基本吻合,两款软件计算的附加阻尼比误差很小,可以认为 YJK 软件计算减震结构的正确度非常高。30.2s 终止时刻 YJK 与 ETABS 计算的附加阻尼 比如表 4.1 所示。

计算软件	方向	模态阻尼耗能	粘滞阻尼器耗能	附加阻尼比(%)
		kN-m	kN-m	
YJK	Х	98.840273	81.034192	4.10
	Y	93.634512	93.377639	4.99
ETABS	Х	100.2069	83.7283	4.18
	Y	95.5929	96.8043	5.06

表 4.1 30.2s 终止时刻附加阻尼比计算

终止时刻 X 方向 YJK 与 ETABS 附加阻尼比分别为 4.10%和 4.18%,相差 1.95%;终止 时刻 Y 方向 YJK 与 ETABS 附加阻尼比分别为 4.99%和 5.06%,相差 1.40%。

5、总结

通过以上计算结果对比可知,对于减震结构的计算,YJK 与 ETABS 计算的楼层剪 力,结构顶点位移以及附加阻尼比等结果非常接近,误差均在 5%以内,采用 YJK 软件 计算减震结构,计算结果正确可靠。

第五章 布置屈曲约束支撑结构小震设计实例

屈曲约束支撑是位移相关型消能器,能有效提高结构的抗侧刚度,且能增加大震下 结构的耗能能力,是目前应用最为广泛的消能减震技术之一,实际工程中,部分工程要 求屈曲约束支撑小震下弹性,不屈服,只考虑对结构提供的刚度。也有部分工程要求小 震下也发挥屈曲耗能。本节布置屈曲约束支撑的消能减震结构设计流程如下:

1、无控结构模型进行小震反应谱方法计算。得到相应结果。

2、设定消能减震方案:根据无控模型结果确定采用的减震方案,及消能器数量、 位置和参数。

3、建立有控的初步方案结构模型。

4、有控结构模型小震时程计算。

5、有控结构模型大震弹塑性时程计算。

工程概况

某省幼儿园主体结构,3层,高13.6m,设计地震设防烈度8度第2组,设计基本 地震加速度为0.20g,场地类别为Ⅱ类,特征周期0.4s。重点设防,乙类建筑。

一、无控结构模型进行小震反应谱方法计算,得到相应结果

第1扭转周期(0.4802)/第1平动周期(0.5828) = 0.82

对无消能器模型进行小震的反应谱法计算,强制刚性楼板假定模型下看整体指标, 非强制刚性楼板假定模型下看配筋结果。

表1 地震作用下的楼层最大位移表

			地震作用⁻	下的楼层最大位和	多表位移信息		
层	塔	X 方向层位	X 方向层间	X 方向层间位	Y 方向层位	Y 方向层间	Y 方向层间位
号	号	移比	位移比	移角	移比	位移比	移角
1	1	1.06	1.06	1/688	1.02	1.02	1/885
2	1	1.05	1.04	1/539	1.01	1.01	1/539
3	1	1.04	1.03	1/924	1.01	1.02	1/854

表 2 地震作用规定水平力下的楼层最大位移表

			地震作用规定水	平力下的楼层最	大位移表位移	信息	
层	塔	X 方向层位	X 方向层间	X 方向层间位	Y 方向层位	Y 方向层间	Y 方向层间位
号	号	移比	位移比	移角	移比	位移比	移角
1	1	1.03	1.03	1/704	1.01	1.01	1/885
2	1	1.02	1.01	1/551	1.01	1.00	1/538
3	1	1.01	1.01	1/941	1.00	1.01	1/847

表 3 风载作用下的楼层最大位移表

			风载作用	下的楼层最大位和	多表位移信息		
层	塔	X 方向层位	X 方向层间	X 方向层间位	Y 方向层位	Y 方向层间	Y 方向层间位
号	号	移比	位移比	移角	移比	位移比	移角
1	1	1.02	1.02	1/11842	1.00	1.00	1/8146
2	1	1.03	1.04	1/10117	1.01	1.02	1/5268
3	1	1.03	1.04	1/16746	1.01	1.03	1/8240

由以上结果可以看出 2 层的层间位移角较大,超过《抗规》1/550 限值要求,需要

调整方案。

非强刚下的配筋结果,没有超限现象。

二、设定消能减震方案:根据无控模型结果确定采用的减震 方案,及消能器数量、位置和参数

对于某省要求乙类建筑,包括学校、幼儿园、医院等都应进行减隔震设计,故该工 程需要进行消能减震结构的设计,提高其中大震抗震性能。

由第一步对无控模型的结果可以看出,无控小震反应谱结果基本满足规范上抗震要 求,可考虑采用在小震弹性且提供刚度减小层间位移、中大震提供耗能的屈曲约束支撑 消能器构件。

按照"整体均匀、局部集中"的原则布置屈曲约束支撑构件。

拟采用 1-3 层均布置相同型号吨位的屈曲约束支撑,参数如下:

初始刚度: 60000kN/m 屈服承载力 200kN,极限承载力 320kN,屈服后的刚度比 0.02,屈服指数 5,一字型芯材 。

三、建立有控结构模型-初步设计

在 YJK 建模模块中将屈曲约束支撑按照斜杆建立,截面类型和尺寸可按照初始刚度 进行等效,材料类型设置为 5(钢材),在前处理中指定成屈曲约束支撑属性后,计算 时会被连接单元给取代。程序还自动对其进行强度验算,此时采用的截面即为建模时的 斜撑截面。 1、建立有控模型

[#		山美网格			▲ 荷 ↓ 前 後 梁 线 ◆	载输入 () 斜墙	上の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の	定义	况 导入 截面	は思いていた。	I装 材料 ▼	「山」」	
×	添加	修改	删除显示》	理	支撑布置有	参数			×		H		
	序号 1 2 3 4	形状 箱形 箱形 箱形 箱形 箱形	参数 80*80 60*60 40*40 300*300		1端x定位 1端y定位 1端标高 2端x定位	立偏移(立偏移((mm) 立偏移(ʻmm) ʻmm) ʻmm)	0 0 回与 0	层高同				
	截面定)		Ţ F	н	都 辩 辩 辩 祥 和 名	或 新新新新新新新新新新新新新新新新新新新新新新新新新新新新新新新新新新新新	型 可总高度度 如缘厚度 如缘厚度 如缘厚度 如缘厚度	{ (mm) { (mm) { (mm) { (mm) { (mm) { (mm) } }	「 <mark>7 希</mark> B H U T D F M	部 80 80 39 39 39 39 39 5			

子框架

2、计算参数设定

设定小震反应谱计算参数,选择采用输入的等效线性属性,其他按照实际情况设置。

如图

构总体信息	地震信息 > 隔震孤震	句络设计	
井江町にえ 控制信息 回度系数	Pittere C Pittere	大震计算模型 不屈服	弹性
二阶效应	□ 協震医数 · · · · · · · · · · · · · · · · · · ·	大震地震影响系数最大值	0.9
1.荷载信息 其本参称	隔震结构设计方法公司	周期折减系数 1 特征周期	0.3
	分部设计法	- 结构阻尼比(%)	
地展信息 自定义影响系数曲线	调整后水平向减震系数(β/4) 1	◎ 全楼统一	5
时域显式随机模拟法 地震作用放大系数	□ 计算中震非隔震模型	○ 按材料区分 钢	2
性能设计		型钢砼 5 混凝土	5
福震減震	云南减震规程	连梁刚度折减系数	1
就信息 5.荷载信息	☑第一类抗震设防目标 小震αMax 0.04	中梁刚度放大系数 一 老虎双向地雪作用	1.5
构件设计信息	減隔震 最大Rthn阻尼比 0.25	弹性	
· 钢构件设计信息 图络设计	附加阻尼比折减系数 1	结构阻尼比(%)	5
排信息 材料参数	考虑钢筋超强系数	 ○ 主伝统一 ○ 按材料区分 鋼 	2
钢筋强度	反应谱计算方法	型钢砼 5 混凝土	5
	● 实振型分解反应谱法 式電幅電解性加限中比算法 ##母法	连梁刚度折减系数	1
组合表		中梁刚度放大系数	1.5
自定义工况组合	减隔震元件有效刚度和有效阻尼	考虑双向地震作用	
調式	● 采用输入的等效线性属性		
	○ 迭代确定○ 自动采用弹性时程计算结果		

3、设定屈曲约束支撑参数

在特殊支撑的"设置连接属性"选择"屈曲约束支撑"或"塑性单元 wen",设定 相应参数,并布置到支撑构件上。

RB1	类型:	屈曲约束式	え撑	~				
ND2	有 k1	ī效刚度KE N∕m, kN. m∕r:	有效阻尼: adCE(kN.s/m	非线性)	刚度 K(kN/m)	屈服力 KY (kN)	屈服后 刚度比KYI	屈服指数 R exp
	🗹 V1	60000	0	\square	60000	200	0.02	5
	🗌 V2	0	0		0	0	0	0
	🗌 V3	0	0		0	0	0	0
	🗌 R1	0	0		0	0	0	0
	🗌 R2	0	0		0	0	0	0
	🗌 R3	0	0		0	0	0	0
添加 6	刪除	应用			数据库 ↓ ↓		腚	取消
添加 6	冊 修余] <u>应用</u>	Claimer of		数据库 ↓ ↓		龍	取消

一般设置屈曲约束支撑两端铰接。

四、有控结构模型小震反应谱法计算

分两种情况:

1、小震下阻尼器保持弹性

因为 BRB 在小震下均保持弹性,故可直接在 BRB 定义中,将有效刚度设置为 BRB 初始刚度,因为 BRB 无耗能,有效阻尼填为 0,"减隔震元件有效刚度和有效阻尼"中 选择"采用输入的等效线性属性",直接对有控模型进行上部结构的"生成数据+全部 计算",计算完毕校核 BRB 的应力比≤1.0,注意 BRB 建模的支撑截面应与所选的 BRB 产品芯材等强。同时查看结构层间位移角、位移比等各项指标是否满足规范要求, 以及构件是否超筋,有不满足的情况则调整支撑布置方案重新计算。

BRB2	类型:	屈曲约束3	え揮	~				
	有 k	有效刚度KE N/m, kN.m/r	有效阻尼 adCE(kN.s/m)	非线性)	 K(kN/m)	屈服力 KY(kN)	屈服后 刚度比KYF	屈服指数 (exp
	🗹 V1	60000	0		60000	200	0.02	5
	🗌 V2	0	0		0	0	0	0
	🗌 V3	0	0		0	0	0	0
	🗌 R1	0	0		0	0	0	0
	R 2	0	0		0	0	0	0
	R3	0	0		0	0	0	0

2、小震下阻尼器屈服耗能

此种情况,BRB 屈服耗能,其有效刚度是一个处于初始刚度和屈服后刚度(屈服后 刚度比与屈服前刚度的乘积)之间的值。先对有控模型进行上部结构的"生成数据+全 部计算"完成小震下反应谱方法的计算;此结果不是最终的结果,是进行后续时程计算 的中间过程,此种情况还需进行以下第五~六部分的操作,即第五部分直接积分法时程 计算确定 BRB 的有效刚度和有效阻尼系数,供第六部分上部反应谱计算读入。

五、有控结构模型小震作用下直接积分时程法计算

1、生成与规范谱拟合较好的人工地震波

首先需要在"弹性时程分析"菜单中生成一条(或多条)与规范谱拟合得极好的人 工波,并使用此波来计算有效刚度和有效阻尼。为保证人工波与规范谱拟合较好,可以 将周期间隔设置为 0.001s,修正迭代次数设置为 7 或更高。

2、在弹性时程模块中选择直接积分法进行该地震波下的时程计算

在弹性时程模块中选择直接积分法进行该地震波下的时程计算:

65	名称	分析方法	是否计算	
1	16时54分,人工波1 [0.0]	直接积分法	~	増加
2	16时54分,人工波1 [90.0]	直接积分法	~	
				修改
				an-in A
				删除
				重置

h. 	(TTTT+ [2:2]	
地震波 16时54	分,人工波1	~
主方向与X轴正向	回夹角(度) 0	
1程分析		
分析方法		
○振型叠加法	◉ 直接积分	法
#2#49#1词(a) 0		etia(a) 31
	/ / / / / / / / / / / / / / / / / / /	
时间步长(s) 0	.01 输出间	1 1
输出间隔(s) 0	.01	迭代控制参数
HHT和分参数		
a 0	B 0.25	V 0.5
瑞利阻尼	ŧΞπIIa	łĘŦilo
FHHD -	振空A	振空
周期:	0.5626	0.4802
阻尼比:	0.05	0.05
☑质量系数alf	fa	0.59108
☑刚度系数be	eta	0.00419

号	恒载系数	活载系数	峰值加速度类型	主方向峰值加速度(cm/s2)	次方向峰值加速度(cm/s2)	竖方向峰值加速度(cm/s2
1	0.00	0.00	PGA	70	0.00	0.00
		L				1

时程计算完后得到该地震波 X 向、Y 向施加下的结构能量曲线。

(1) 结构能量曲线

从以上曲线可以看出,小震下屈曲约束支撑已经进入一定的耗能阶段,但是耗能较 小,接近弹性状态。

(2) 屈曲约束支撑的滞回曲线

绘制1层、2层、3层各一个屈曲约束支撑的滞回曲线:

由以上滞回曲线可以看出,层间位移最大的2层所在的屈曲约束支撑,开始进入屈 曲耗能,刚度有所退化,但退化不大,1层和3层的基本处于弹性阶段,没有进入屈曲 耗能阶段,刚度基本没有发生退化,接近初始刚度60000kN/m。

滞回曲线上的红色直线为有效刚度,软件在滞回曲线右上角也输出了当前屈曲约束 支撑在当前地震水准下的有效刚度值。

六、有控结构小震作用下反应谱法计算

在上部结构前处理及计算中的计算参数-隔震减震中,"减隔震元件的有效刚度和 有效阻尼"选择"自动采用弹性时程计算结果"。

构总体信息	地震信息 > 隔震減震	有终识让	
身控制信息 控制信息	◎ 「喃辰		
利度系数		大震计算模型	弹性
二阶效应		大震地震影响系数最大值	0.9
荷载信息		周期折减系数 1 特征周期	0.3
基本参数	隔震结构设计方法 分部设计 一	不屈服	
炭信息 	分部设计法	结构阻尼比(%)	
自定义影响系数曲线	调整后水平向减震系数(β/Ψ) 1	 全楼统一 	5
时域显式随机模拟法	□ 计算中震非隔震模型	○ 按材料区分 钢	2
地展作用放入系统	减震	型钢砼 5 混凝土	5
性能包络设计	減震结构设计方法 抗规小震法 ~	连梁刚度折减系数	1
ଜ震滅震 计信息		山沙刚度动大玄粉	
荷载信息	第一类抗震设防目标 小震 Max 0.04	一 老市四向地西作用	1.5
件设计信息	减隔震	一ちなべいので長行用	
钢构件设计信息	最大附加阻尼比 0.25	5年に 结构阻尼比(%)	
络设计	附加阻尼比折减系数 1	 全楼統一 	5
科信息 材料参数	一考虑钢筋超强系数	 ○ 法材料区分 钢 	2
钢筋强度	反应谱计算方法	刑钢砼 5 混凝土	5
下室信息	● 实振型分解反应谱法	THUR O MONT	
组合系数	减震隔震附加阻尼比算法 能里法 🗸	连梁刚度折减系数	1
组合表	○ 复振型分解反应谱法	中梁刚度放大系数	1.5
日正义上况组合	减温季于性有效刚度和有效阻尼	考虑双向地震作用	
電式			
	○ 由•0本用)+[1+]111+月 舟和木		

然后进行"生成数据+全部计算"完成有控结构的小震反应谱法计算。 强制刚性板假定计算得到整体指标:

1、层间位移角

Г

表1 地震作用下的楼层最大位移表

地震作用下的楼层最大位移表位移信息												
层号	塔 号	X 方向层位 移比	X方向层位 X方向层间 Y方向层位 Y方向层间 Y方向层 移比 位移比 位移角 移比 位移比 位移角									
1	1	1.09	1.09	1/779	1.00	1.00	1/1039					
2	1	1.08	1.08	1/641	1.00	1.01	1/665					
3	1	1.08	1.07	1/1129	1.01	1.03	1/1119					

表 2 风载作用下的楼层最大位移表

	风载作用下的楼层最大位移表位移信息											
层号	塔 号	X 方向层位 移比	Y 方向层间 位移比	Y方向层间 位移角								
1	1	1.02	1.02	1/13911	1/13911 1.00		1/9100					
2	1	1.02	1.02	1/12815	1.01	1.02	1/6273					
3	1	1.02	1.02	1/21593	1.02	1.03	1/10394					

可见结构各楼层的层间位移角均大于《抗规》GB50011-2010 中表 5.5.1 的框架结构 1/550,满足要求。

2、扭转位移比

	地震作用规定水平力下的楼层最大位移表位移信息											
层号	塔 号	X 方向层位 移比	X 方向层间 位移比	Y 方向层间 位移比	Y 方向层间 位移角							
1	1	1.04	1.04	1/812	1.01	1.01	1/1031					
2	1	1.03	1.02	1/674	1.00	1.00	1/664					
3	1	1.02	1.02	1/1178	1.00	1.02	1/1122					
		X+方向层 位移比	X+方向层间 位移比	X+方向层间 位移角	Y+方向层 位移比	Y+方向层间 位移比	Y+方向层间 位移角					
1	1	1.00	1.00	1/835	1.15	1.15	1/905					
2	1	1.01	1.02	1/672	1/672 1.16 1.16							
3	1	1.01	1.02	1/1174	1.16	1.17	1/971					

表 3 地震作用规定水平力下的楼层最大位移表

		X-方向层位 移比	X-方向层间 位移比	X-方向层间 X-方向层间 Y- 位移比 位移角		Y-方向层间 位移比	Y-方向层间 位移角
1	1	1.08	1.08	1/785	1.16	1.16	1/892
2	1	1.06	1.06	1/648	1.16	1.16	1/578
3	1	1.06	1.06	1/1135	1.15	1.14	1/1003

可见结构各楼层的扭转位移比均大于 1.2,满足《抗规》表 3.4.3-1 的要求(不宜大于 1.2,不应大于 1.5)。

3、构件设计结果

查看非强刚假定下的配筋简图,可以看出,所有构件无超筋,满足相关规范设计要 求。

可以重点查看屈曲约束支撑的强度计算应力比结果,因屈曲约束支撑不存在屈曲问 题,所以不用看稳定计算结果。

4、查看有控结构模型所用的实际有效刚度和阻尼值

有控结构的反应谱法计算所用到的线性参数"有效刚度和有效阻尼"是由第五步直接积分时程法得到的精确值。

在"设计结果"的"构件编号"菜单中可以查看有效刚度和有效阻尼数值。

列出所有屈曲约束支撑的由直接积分时程法计算出的有效刚度有效阻尼,并且每个都不相同,有效刚度一般在 52000-60000kN/M 之间,和前处理设定的非线性初始刚度 60000 对比,小震下刚度有所退化,但退化非常小,说明在小震时屈曲约束支撑也部分

进入了屈服状态,并开始发挥耗能作用,和第五步的能量曲线结果一致。这些表明屈曲 约束支撑在小震下接近弹性状态。

而有效阻尼大多数都是一个较小的数值,一般为 0-30 之间,和整体结构的阻尼比 较是非常小的,可以忽略,这和一般屈曲约束支撑将其有效阻尼参数设置为 0 是相符的。 在此文档中是考虑了有效阻尼的贡献的,虽然很小。其中有几个刚度退化比较严重的屈 曲约束支撑,其有效阻尼达到 300,有的达到 900,说明在小震下已经进入屈曲滞回耗 能阶段。

如果不满足整体指标等规范要求,请调整方案,重新布置有控模型,重复执行第二 ~六步骤。如果柱构件配筋超限时,一般可考虑换成型钢混凝土柱。此处不详细介绍。

七、有控模型和无控模型中大震弹塑性时程分析对比

屈曲约束支撑小震时一般保持弹性或接近弹性,在中大震时进入屈服状态,发挥耗 能能力。这里采用盈建科的 YJK-EP 模块进行。

YJK-EP 是 YJK 的塑性分析模块,提供了静力弹塑性时程分析和动力弹塑性时程分 析两个模块,此处用动力弹塑性分析模块进行。

1、结构模型

有控模型为采用并进行了上部结构的反应谱法计算后的,即经过了第六步后的模型。 无控模型为原未设置消能器的模型,进行完第一步小震反应谱法计算后的结构模型。

2、选择地震波

按照《抗规》GB50011-2010 第 5.1.2 及《建筑消能减震技术规程》JGJ297-2013 第 4.1.4 和第 4.1.5 条要求, 3 条波取包络,7 条或7 条以上取平均,按照 YJK-EP 中自 动选择地震波功能,选取3 条合适的地震波,采用无控模型进行选波。

其中2条天然波:

Chi-Chi, Taiwan-05_NO_2958, Tg(0.48) 简称 CCT Superstition Hills-01 NO 718, Tg(0.43) 简称 SH

147

1条人工波:

ArtWave-RH3TG045,Tg(0.45) 简称 ART

依据《建筑消能减震技术规程》JGJ297-2013 第 4.1.1 条和第 4.3 节, "8 度及 8 度以上的大跨度与长悬臂消能减震结构及 9 度时的高层消能减震结构,应计算竖向地震作用",本例为 8 度多层规则结构,故不考虑竖向地震。

	添加地震波		也中地震波	起始周期	0.01
	名称			- 终止周期	6
1	Chi-Chi, Taiwan	-05_NO_2958,Tg(0.4	18)	周期步长	0.02
2	Superstition Hil	11s-01_NO_718,Tg(0 5 Tg(0_45)), 43)	特征周期(s)	0. 45
				参与振型数	9
				设防列度	8 (0.2g) ▼
				地震見勿向	[空遇地震 ▼]
积分	步长(s)		0.02	地展家州	
结构图	目尼比(%)			地震影响系数較大值	0.9
© ≦	≥楼统—		5	主方向峰值加速度(cm/s ^z) 400
〇封	该材料区分	钢	2	次方向峰值加速度(cm/s²) 340
		混凝土	5		
		刑钢 混 耀十	5		
				确定	取消
				<u> </u>	取消 周期 周期2 月 規定者 0.583 0.561 0
					取消 所期 周期2 月 規志谱 0.583 0.561 0 月秋谱 -14% -14% -
				 确定	取消 周期 周期2 月 規定者 0.583 0.561 0 平均者 -142 -142 -
4					取消 周期 周期2 月 規志谱 0.583 0.561 0 予約者 -14% -14% -
				<u>确定</u>	取消
A				<u>确</u> 定	取消 周期 周期2 月 規定者 0.583 0.561 0 平均者 -142 -142 -
				确定 (取消 周期 周期2 A 規定者 0.583 0.561 0 学校者 -142 -142 -
					取消 周期 周期2 月 泉茂塔 0.583 0.561 0 平均语 −142 −142 −
					取消 周期 周期 周期 周期 周期 周期 周期 周期 日期 日
A				· 确定 (取消
	Z			<u>确定</u>	取消 周期 目 日
	Ma			确定 (取消 周期 周期2 月 規定番 0.583 0.561 0 学材番 −142 −142 −

有控模型和无控模型均采用此三条波,然后进行时程计算。

3、大震时程计算及结果查看

(1) 大震弹塑性耗能曲线查看

CCT 耗能:

可见大震下,屈曲约束支撑耗能效果比较明显。

(2) 屈曲约束支撑的滞回曲线

查看某条地震波下的屈曲约束支撑的滞回曲线,我这里查看 ART 的第 1、2、3 层 各一个屈曲约束支撑的。

可以看出,大震弹塑性下 BRB 滞回曲线饱满,屈曲约束支撑都已经进入屈曲耗能 阶段,最大出力都达到或超过了屈服承载力 300kN,2 层的屈曲约束支撑最大位移为 13.8mm。

应查看所有地震波所有 BRB 滞回曲线,以得到 BRB 最大出力及弹塑性最大位移,

以来判断厂家提供的材料是否满足 1.2 倍最大位移的要求。

(3) 层间位移角对比

三条波包络值对比:

通过以上对比,布置 BRB 的有控模型在大震弹塑性下的最大层间位移角有明显的 减小,X 向 1/74 减小到 1/92,Y 向由 1/59 减小到 1/104。

(4) 层地震剪力对比

三条波包络值:

(5) 大震屈服机制合理性判断

以 ART 波损伤为例:

0.4s 时刻的损伤图,梁端出现损伤,有的达到塑性铰状态。

2s 出现部分柱构件损伤:

最后损伤图:

从以上可以得出,结构的破坏,首先是梁端出现了塑性铰,而后梁端塑性铰增多, 进而少量柱端出现破坏,最后时刻是部分梁端破坏严重,个别柱也出现较严重的破坏。 屈服机制符合性能设计要求。

第六章 布置屈曲约束支撑结构中震设计实例

阻尼器在中震下一般会进入屈服阶段,同时产生耗能,给结构提供附加刚度的同时 提供附加阻尼,其有效刚度不再是初始刚度,而是一个处于初始刚度和屈服后刚度之间 的值;因此对于按中震设计的位移型阻尼器减震结构,除了要确定等效附加阻尼,还需 要确定阻尼器的等效刚度;本节用一实例介绍采用消能减震规程 6.3.3 条反应谱迭代的 中震计算方法,当然本例亦可采用前文所述的其他计算方法;本例按照导则进行中震设 计,属于导则 II 建筑。

布置位移型阻尼器的消能减震结构中震设计流程如下:

1、无控模型中震反应谱计算。

- 2、确定消能减震方案。
- 3、建立有控模型并进行中震反应谱计算。
- 4、有控模型中震弹性时程计算,对比时程与反应谱的结果并修正附加阻尼比。
- 5、有控模型最终反应谱计算及设计。
- 6、有控模型大震弹塑性时程计算。

工程概况

某布置屈曲约束支撑的减震结构,现浇钢筋混凝土框架结构,重点设防,乙类建筑; 建筑 5 层,结构 6 层(含一层拉梁层),结构高度 17.9m,设计地震设防烈度 7 度,设计 基本地震加速度为 0.15g,地震分组第二组,场地类别为III类,特征周期 0.55s;主体 结构阻尼比 5%,周期折减系数 0.7。

一、无控模型进行中震反应谱方法计算

对无消能器模型进行中震的反应谱法计算,参数设置如下:

1 13)没有意思 1 算控制信息 1211年1月	设计地震分组: 〇一 ④	EO =	- 结构阻尼比(%) ● 全楼统—			5
刚度系数	□ 按新区划图计算		○ 按材料区分		钢	2
二阶效应 分析求解参数	设防烈度	7 (0.15g ~	刑 网络 服 服 书	5	调耀十	5
荷载信息	场地类别	III \sim	重和地方、	10	北洲工	0
基本参数 震信息	特征周期	0.55	● 満然備心 □ 考虑偶然偏心 x	0.05	y	0.05
地震信息	周期折减系数	0.7	- 偶然偏心计算方法:			
目定义影响系数曲线 时博見式随机模拟法	特征值分析参数		 等效扭矩法(传 	统法)		
地震作用放大系数	分析类型	wyd-ritz \sim	○瑞利─里兹投影	反射谱法((新算法)	
性能设计 性能包络设计	〇用户定义振型数	15	□老虎双向地震作用			
隔震減震	● 程序自动确定振型数				表作田	
计信息 荷载信息	质量参与系数之和(%)	90	□ 日幼げ昇取个利地展	한기미비개만. 후 (호. 호호)	辰11月月	
件设计信息	□最多振型数量	150	科父仇刚力构件力问用.	度(0-90)		
构件设计信息 钢构件设计信息	□ やうに回な合いの表面もか	T 🖵	活荷载重力荷载代表值	組合系数	0.	5
络设计	LI 按土派型佣定地展的刀枪 1. 小标加给新数级	15	地震影响系数最大值		0.	34
料信息 材料条粉	虹性采机展寺级	_35 ~	用于12层以下规则砼框	架结构薄弱	號 0.	72
钢筋强度	III	三级 ~	驱弃10°6度影响未致取. 坚向地震作用系数库线	伯	0.	08
下室信息 # 4 4	钢框架抗震等级	三级 ~		山 小下安的社	物氏母	
转组 合 组合系数	- 抗震构造措施的抗震等级 		回地展时异时小气感地	17美日35日	何以里	
组合表	□ 提高一级 □ 降(低一级				
自定义上况组合 定加固	☑ 應支剪力 遺結 构底部加强	区剪力墙抗震等				
配式		施的抗震等级诼				
	□□三降低及抗震措施四级					
	□ □ 局部模型反应谱法计算竖	向地震时				
	马城小千城里					
	生物阻尼比・					
	该阻尼比参数只用于地震作用	计算,软件提供了	全楼统一阻尼比和按材料	区分阻足	比两种	计算方
	法。"全楼给—":软件计算	时对整体结构各振	刑案用统一的阻尼比(%)	。 " 按林楼	四日本"	· 设罟各

查看周期、位移角、位移比等整体指标如下:

表1 非强刚下周期结果

振型号	周期	平动系数(X+Y)	扭转系数(Z)
1	0.8102	0.99(0.00+0.99)	0.01
2	0.7774	0.07(0.05+0.01)	0.93
3	0.7543	0.94(0.94+0.00)	0.06
4	0.2439	0.99(0.00+0.99)	0.01
5	0.2294	0.69(0.68+0.01)	0.31
6	0.2264	0.33(0.32+0.01)	0.67

层号	塔号	X 方向层间位移角	Y方向层间位移角
1	1	1/796	1/769
2	1	1/248	1/233
3	1	1/222	1/197
4	1	1/284	1/231
5	1	1/366	1/281
6	1	1/527	1/402

表 2 地震作用下的楼层最大位移角

表 3 地震作用规定水平力下的楼层最大位移比

-					
层号	塔号	X 方向层位移比	X 方向层间位移比	Y 方向层位移比	Y 方向层间位移比
1	1	1.00	1.00	1.00	1.00
2	1	1.03	1.03	1.27	1.27
3	1	1.03	1.02	1.26	1.25
4	1	1.02	1.02	1.25	1.23
5	1	1.02	1.02	1.25	1.24
6	1	1.02	1.02	1.25	1.24

由以上结果可以看出 X 向 2~4 层的层间位移角、Y 向 2~5 层的层间位移角超限,不 满足导则 4.3.1 条规定的设防地震下框架结构层间位移角限值 1/300,需要调整方案。

非强刚下的配筋结果: 1 层框架柱抗剪、节点域超限; 2-4 层大部分框架柱抗弯、 抗剪超限,梁抗弯超限,梁柱节点域抗剪超限,以 2 层配筋为例,超限情况见下图。

二、确定消能减震方案

根据无控模型结果,初步确定消能器数量、位置和参数的减震方案,以提高结构的 抗震性能。

由第一步对无控模型的结果可以看出,无控模型中震反应谱结果显示层间位移角不 满足规范要求,且下部楼层构件超筋严重。减震方案可考虑采用屈曲约束支撑阻尼器, 该类阻尼器在中震下既能提供刚度,也可提供附加阻尼以减小地震作用。通过吸收地震 能量,达到减小主体构件损伤的目标。

按照"整体均匀、局部集中"的原则布置屈曲约束支撑。

拟在地上各层下列位置布置人字形屈曲约束支撑,共5组,X向2组,Y向3组, 位置见下图:

地上一~三层阻尼器型号如下图:

地上四~五层阻尼器型号如下图:

各阻尼器参数如下表:

阻尼器编号	初始刚度 (KN/m)	屈服力 (KN)	屈服后刚度比	屈服指数
BRB-1080-4	345462	1200	0.03	10
BRB-1440-4	486624	1600	0.03	10
BRB-2700-4	801598	3000	0.03	10

三、建立有控模型并进行中震反应谱计算

在 YJK 建模模块中将屈曲约束支撑按照斜杆建立,截面类型和尺寸可按照屈曲约束 支撑的屈服力进行等效,材料类型设置为 5(钢材)。在前处理中指定成屈曲约束支撑 属性后,计算时会被连接单元取代。程序会自动对其进行强度验算,此时采用的截面即 为建模定义的斜撑截面。此外,将与 BRB 相连的框架柱替换为型钢混凝土柱,加强子 结构的抗震性能。

1、斜杆定义及布置

根据屈曲约束支撑的屈服力等效成普通钢斜撑,定义信息如下图所示:

[†		7 AL	一造		司 🖸	~ 隔墙埴充墙	~ 斜杆	了 次梁	全 绘墙线	公梁线	間斜梁	一加腋	変載面梁	楼梯	上した	くしていた。
						•		-	•	•	•	•	•		布置	刷
	-	_							构件	输入						
×	添加	I .	修	改	删除	显示	清理	斜	撑布置参	数			×			
10	1	Ļ	顶	底	当前层	去重	着色		رحر مد		0					
	序号	序号 形状 参数			材料	1	s而X定IUI	佣作多(mm)			-					
	1	3	箱形		82*82*40*	40*40*40	钢	1	9篇97年121	価移(mm)			-1/1			
	2	1	箱形		97*97*48*	48*48*48	钢	1	端标高(m	nm)	0					-
	3		箱形		125*125*6	2*62*62*62	钢					与层高	同			
	l	J			Г	F		_	名称 日 斜打 截研 箱 箱 新 石 新 石 新 石 新 石 新 石 新 石 新 石 新 石 新 石	季参教 	閲度(mm) 高度(mm) 夏度(mm)	B H V	1 ⁰ 7 82 82 40	9容 箱形 2		×
	I)			B		H		11 箱 新 村 末 名 利	5年205%月 3下边缘月 3石边缘月 4 7	₽度(mm) 厚度(mm) 夏度(mm)	D F	40 40 40 5:	,) 前列		

BRB-1080-4 支撑截面定义

BRB-1440-4 支撑截面定义

添加	修	改	删除	显示	清理	斜撑布置参数		\times		
1 1	顶	底	当前层	去重	着色	(注出, 产) 产) 卢皮 ()	0			
躬号	形状		参数		材料		0	-		
1	箱形		82*82*40*4	40* <mark>4</mark> 0*40	钢		U		1/1	
2	箱形		97*97*48*	48*48*48	钢	1端标高(mm)	0			
3	箱形		125*125*6	2*62*62*6	2 钢	2)出来宁位偏移(ma)		高同		
						23両x)上 12 19 (000)	0			
									28	
						名称			内容	
						曰 斜撑参数				
				Б		截面类型			7 箱形	
		1		, F		箱形截面总宽度	≹(mm) B		125	
				\vdash		箱形截面总高度	₹(mm) H		125	
U		-				箱形上边缘厚度	≹(mm) V		62	
82		1				箱形左边缘厚度	₹(mm) T		62	
						箱形下边缘厚厚	≹(mm) D		62	
					п	箱形右边缘厚度	₹(mm) F		62	
					n	材料			5:钢	
						名称				
D			-							
-		<u> </u>								
		1	P							

BRB-2700-4 支撑截面定义

将定义好的斜杆布置到模型中,具体位置见确定消能减震方案中阻尼器布置图。

2、设定屈曲约束支撑参数

在特殊支撑的"设置连接属性"选择"屈曲约束支撑"或"塑性单元 wen",设定 相应参数,并布置到支撑构件上。

RB-1440-4 RB-2700-4	有	油曲约来 S 效刚度KE	<1≇ 有效阻尼	非线性	- 刚度 K(LN/m)	屈服力	屈服后	屈服指数
	V1	0		10	345462	1200	0.03	10
	U2	0	0		0	0	0	0
	🗌 ນສ	0	0		0	0	0	0
	R1	0	0		0	0	0	0
	R 2	0	0		0	0	0	0
	🗌 R3	0	0		0	0	0	0

3、反应谱计算及结果查看

布置斜杆并定义成屈曲约束支撑参数后的模型即为有控模型。对有控模型进行中震 反应谱计算,注意:此次反应谱计算结果并不是最终结果。

在前处理中点击计算参数,地震参数。设定中震反应谱计算参数,隔震减震,选择 迭代确定+能量法,其他按照实际情况设置,如下图,注意结构阻尼比还应按无控模型 的填写,即结构固有阻尼比为 5%。

结构总体信息	- 地震信息 > 隔震減震					
计算控制信息	□ 隔震 ☑ 減震		包络设计			
控制信息 网度系数	隔震	0	大震计算模型		不屈服	弹性
二阶效应	隔震层数	0.	大震地震影响系	数最大值	٤.	0.72
分析不解参数 网 荷载信白	隔震层层号		周期折减系数	1	特征周期	0.6
基本参数	隔震结构设计方法	分部设计 🗸	不屈服		131027-5701	
地震信息	分部设计法		结构阻尼比	(%)		
¹¹¹ 辰信忌 自定义影响系数曲线	调整后水平向减震系数(β/Φ)	1	 全楼统一 			5
时域显式随机模拟法	□ 计算中震非隔震模型		 按材料区 	:分	钢	2
地震作用放大系数 性能设计	减震		型钢砼	5	混凝土	5
性能包络设计	减震结构设计方法 导	则中震法 🗸 🗸	· 法沙刚度长	咸乏粉		4
	云南减震规程		山沙风度动	中安米		-
活荷载信息	第一类抗震设防目标		中宋附反放.	人未到		1.5
构件设计信息 物件识让信息	减隔震		2曲州	印度作用	1	
钢构件设计信息	最大附加阻尼比	0.25	结构阻尼比	(%)		
包络设计	附加阻尼比折减系数	1	① 全楼统			5
材料信息 材料参数	□ 考虑钢筋超强系数		○ 按材料区	分	钢	2
钢筋强度	反应谱计算方法		刑的社	5	- 混凝土	5
地下室信息 着我知今	 实振型分解反应谱法 		The	0	ACOULT	0
组合系数	减震隔震附加阻尼比算法	能量法 🗸	连梁刚度折	咸系数		1
组合表	○ 复振型分解反应谱法		中梁刚度放:	大系数		1.5
日正义上况组合 鉴定加固	减隔雪元件有效刚度和有效阻尼		考虑双向	地震作用	3	
装配式	 ○采用输入的等效线性属性 ●迭代确定 ○自动采用通酬时提注算结果 					
	〇日初本历年往时柱时并结本					

生成数据+全部计算后,得到反应谱计算结果;其中,计算采用的阻尼比在 wzq.out 文本文件中查看。由下图可知,X 向总阻尼比为 0.096,结构固有阻尼比 0.05, 附加阻尼比即为 0.046,同理,Y 向总阻尼比为 0.108,附加阻尼比为 0.058:

初步查看各结构指标及配筋情况,然后进入下一步时程结果对比。

四、有控模型时程计算

第三步中得到的附加阻尼比是否合适,可以通过反应谱与时程的楼层剪力对比进行 校正。弹性时程中选择 7 条波,采用振型叠加法(FNA)进行时程计算,楼层剪力取 7 条 波的平均值,如果第三步中反应谱计算的楼层剪力包络或者接近时程剪力平均值,即认 为附加阻尼比取值得当,否则,就需要对附加阻尼比进行折减。可以灵活运用"附加阻 尼比折减系数"、"最大附加阻尼比"2 个参数对附加阻尼比进行调整。

1、弹性时程选波

有控模型反应谱计算完成后,进入弹性时程模块选择地震波,地震波选择中设置好 选波参数,见下图。

点击添加地震波,选择"自动筛选符合规范要求地震波组合",进行程序自动选波。

选择以下5条天然波、2条人工波的地震波组合,进行后续时程计算。

2、弹性时程计算

工况定义及工况信息(以 ArtWave-RH1TH055,Tg(0.55)[0.0]工况为例)如下:

1 ArtWave-RH1TG055,Tg(0.55) [0.0] 振型叠加法 「 2 ArtWave-RH1TG055,Tg(0.55) [90.0] 振型叠加法 「 3 ArtWave-RH2TG055,Tg(0.55) [90.0] 振型叠加法 「 4 ArtWave-RH2TG055,Tg(0.55) [90.0] 振型叠加法 「 5 Big Bear-01_NO_932,Tg(0.59) [90.0] 振型叠加法 「 6 Big Bear-01_NO_932,Tg(0.59) [90.0] 振型叠加法 「 7 Chi-Chi, Taiwan-05_NO_2952,Tg(0.56) [0.0] 振型叠加法 「	序号	名称	分析方法	是否计算	^	
2 ArtWave-RH1TG055,Tg(0.55) [90.0] 振型叠加法 ✓ 3 ArtWave-RH2TG055,Tg(0.55) [0.0] 振型叠加法 ✓ 4 ArtWave-RH2TG055,Tg(0.55) [90.0] 振型叠加法 ✓ 5 Big Bear-01_NO_932,Tg(0.59) [90.0] 振型叠加法 ✓ 6 Big Bear-01_NO_932,Tg(0.59) [90.0] 振型叠加法 ✓ 7 Chi-Chi, Taiwan-05_NO_2952,Tg(0.56) [0.0] 振型叠加法 ✓	1	ArtWave-RH1TG055,Tg(0.55) [0.0]	振型叠加法	~		増加
3 ArtWave-RH2TG055,Tg(0.55) [0.0] 振型叠加法 ✓ 4 ArtWave-RH2TG055,Tg(0.55) [90.0] 振型叠加法 ✓ 5 Big Bear-01_NO_932,Tg(0.59) [0.0] 振型叠加法 ✓ 6 Big Bear-01_NO_932,Tg(0.59) [90.0] 振型叠加法 ✓ 7 Chi-Chi, Taiwan-05_NO_2952,Tg(0.56) [0.0] 振型叠加法 ✓	2	ArtWave-RH1TG055,Tg(0.55) [90.0]	振型叠加法	~		
4 ArtWave-RH2TG055,Tg(0.55) [90.0] 振型叠加法 ▼ 5 Big Bear-01_NO_932,Tg(0.59) [0.0] 振型叠加法 ▼ 6 Big Bear-01_NO_932,Tg(0.59) [90.0] 振型叠加法 ▼ 7 Chi-Chi, Taiwan-05_NO_2952,Tg(0.56) [0.0] 振型叠加法 ▼	3	ArtWave-RH2TG055,Tg(0.55) [0.0]	振型叠加法	~		修改
5 Big Bear-01_NO_932,Tg(0.59) [0.0] 振型叠加法 ▼ 6 Big Bear-01_NO_932,Tg(0.59) [90.0] 振型叠加法 ▼ 7 Chi-Chi, Taiwan-05_NO_2952,Tg(0.56) [0.0] 振型叠加法 ▼	4	ArtWave-RH2TG055,Tg(0.55) [90.0]	振型叠加法	~		
6 Big Bear-01_NO_932,Tg(0.59) [90.0] 振型叠加法 ✓ 7 Chi-Chi, Taiwan-05_NO_2952,Tg(0.56) [0.0] 振型叠加法 ✓	5	Big Bear-01_NO_932,Tg(0.59) [0.0]	振型叠加法	~		删除
7 Chi-Chi, Taiwan-05_NO_2952,Tg(0.56) [0.0] 振型叠加法 🔽	6	Big Bear-01_NO_932,Tg(0.59) [90.0]	振型叠加法	~		
	7	Chi-Chi, Taiwan-05_NO_2952,Tg(0.56) [0.0]	振型叠加法	~		重罟
□ Chi Chi Taiwan 05 NO 2052 Ta/0 56) [00 0] 恒刑政112主 V	^	Chi Chi Taiwan 05 NO 2052 Ta(0.56) [00.0]	tE开I级hn注		~	

	6-1010000	, ig(0, 55) [0.	0]
地展波 Arti		,uss,ig(u.ss)	
王万同与X釉	止回夹角(虏	5) 0	
1程分析			
分析方法 ④ 振型叠力	心法 (○ 直接积分》	±.
起始时间(s)	0	结束的	时间(s) 30.02
时间步长(s)	0.01		隔步数 1
输出间隔(s)	0.01		读代控制参数
			YET 917 19359 84111
日に根方診察		0 0 05	
0		p 0.23	Υ 0.5
瑞利阻尼		ie ni s	
国世日•		振型A 520414	振空8
	0.1	320414	0.177
阻尼比:	0.0	35	0.05
☑质重系	数alfa		0.787945
☑刚度系	数beta		0.002192

工况组合定义如下,主方向峰值加速度按照中震下输入,次方向及竖方向峰值加速

度设为 0:

畤	恒载系数	活载系数	峰值加速度类型	主方向峰值加速度(cm/s2)	次方向峰值加速度(cm/s2)	竖方向峰值加速度(cm/s2)
1	0.00	0.00	PGA	150.00	0.00	0.00
						1
	- E or T \ We down		/// · · · · · · · · · · · · · · · · · ·			

时程计算完成后得到各工况的楼层剪力等结果。

3、对比时程与反应谱结果并修正附加阻尼比

X向,7条波楼层剪力的平均值与反应谱对比如下图:

Y向,7条波楼层剪力的平均值与反应谱对比如下图:

层号		X向楼层剪力	ל		Y 向楼层剪	打
	反应谱	FNA 时程	时程/反应谱	反应谱	FNA 时程	时程/反应谱
1	21277	20445	0.96	21304	22014	1.03
2	21194	21341	1.00	21228	22679	1.07
3	19209	19676	1.02	19307	20714	1.07
4	15570	15717	1.01	15736	17123	<u>1.09</u>
5	11056	11540	<u>1.04</u>	11243	11885	1.06
6	5709	6147	<u>1.07</u>	5845	6628	<u>1.13</u>

X 向及 Y 向.	7条波楼层剪力的平均值与反应谱的数值见了	「表:
		· · · · ·

由上图可知,X向只有顶部两层时程平均剪力超过反应谱剪力稍大,其余楼层反应 谱与时程平均值接近或大于时程平均值,Y向二层及以上楼层时程剪力均超出反应谱, 故仅需对X向附加阻尼比稍作调整,对Y向需作出一定幅度调整,目前X,Y向附加阻 尼比分别为0.046和0.058,可首先对X向附加阻尼比进行调整,取附加阻尼比折减系 数为0.85,重新进行反应谱计算。

第一次调整后,结构阻尼比如下:

可知附加阻尼比为 X 向 0.039,Y 向 0.049; X 向及 Y 向,7 条波楼层剪力的平均值 与反应谱的数值见下表:

层号		X 向楼层剪	うち		Y 向楼层剪	カ
	反应谱	FNA 时程	时程/反应谱	反应谱	FNA 时程	时程/反应谱
1	21840	20445	0.94	21965	22014	1.00
2	21756	21341	0.98	21886	22679	<u>1.04</u>
3	19718	19676	1.00	19899	20714	<u>1.04</u>
4	15983	15717	0.98	16210	17123	<u>1.06</u>
5	11349	11540	1.01	11575	11885	<u>1.03</u>
6	5860	6147	1.05	6015	6628	<u>1.10</u>

由上图可知,X 向除顶层外其余楼层反应谱与时程平均值均接近或大于时程平均值, 满足要求;Y 向仍有较多楼层时程平均值超过反应谱,需继续调整,此时,不再继续下 调附加阻尼比折减系数,而是采用控制最大附加阻尼比的方式,目前Y 向的附加阻尼比 为 0.49,将最大附加阻尼比设置为 0.04,从而实现对Y 向附加阻尼比的调整。

第二次调整后,结构阻尼比如下:

X地震阻尼比	阻尼比
振型号	0.089
1	0.089
2	0.089
3	0.089
4	0.089
5	0.089
Y地震阻尼比	阻尼比
振型号	0.090
1	0.090
2	0.090
3	0.090
4	0.090
5	0.090

可知附加阻尼比为 X 向 0.039, Y 向 0.04; X 向及 Y 向, 7 条波楼层剪力的平均值 与反应谱的数值见下表:

层号		X 向楼层剪力	<u>ታ</u>		Y 向楼层剪	力
	反应谱	FNA 时程	时程/反应谱	反应谱	FNA 时程	时程/反应谱
1	21840	20445	0.94	22715	22014	0.97
2	21756	21341	0.98	22634	22679	1.00
3	19718	19676	1.00	20579	20714	1.00
4	15983	15717	0.98	16764	17123	1.02
5	11349	11540	1.01	11970	11885	0.99
6	5860	6147	<u>1.05</u>	6221	6628	<u>1.06</u>

由上图可知,Y 向除顶层外其余楼层反应谱与时程平均值均接近或大于时程平均值, 满足要求,至此,X 向及 Y 向附加阻尼比均已调整完毕。

五、有控模型最终反应谱计算及设计

按第四步确定的附加阻尼比折减系数 0.85、最大附加阻尼比 0.04 进行最终的反应 谱计算及设计,查看设计指标及配筋情况是否满足要求。

查看周期、位移角、位移比等整体指标如下:

1、周期

振型号	周期	平动系数(X+Y)	扭转系数(Z)
1	0.6659	0.88(0.07+0.82)	0.12
2	0.6499	0.62(0.44+0.18)	0.38
3	0.5929	0.50(0.49+0.01)	0.50
4	0.2016	0.93(0.12+0.81)	0.07
5	0.1987	0.84(0.65+0.19)	0.16

表1 非强刚下周期结果

可见 BRB 的合理布置增加了结构的抗扭刚度,周期比为 0.89。

2、层间位移角

层号	塔号	X 方向层间位移角	Y 方向层间位移角
1	1	1/1243	1/1105
2	1	1/434	1/374
3	1	<u>1/410</u>	<u>1/336</u>
4	1	1/543	1/428
5	1	1/664	1/545
6	1	1/946	1/799

表 2 地震作用下的楼层最大位移角

可见结构各楼层的最大层间位移角 X 向为 1/410, Y 向为 1/336,均满足导则 4.3.1 条规定的 II 建筑设防地震下框架结构层间位移角限值 1/300,满足要求;与无控结构的 1/197 相比,BRB 的应用增加了结构刚度,满足了侧移要求,实现了预期目标。

3、位移比
层号	塔号	X 方向层位移比	X 方向层间位移比	Y 方向层位移比	Y 方向层间位移比
1	1	1.00	1.00	1.00	1.00
2	1	1.05	1.06	1.28	1.28
3	1	1.06	1.06	1.27	1.27
4	1	1.06	1.06	1.27	1.25
5	1	1.06	1.05	1.27	1.26
6	1	1.06	1.04	1.27	1.27

表 3 地震作用规定水平力下的楼层最大位移比

可见结构各楼层的扭转位移比均小于 1.5,满足《抗规》表 3.4.3-1 的要求(不宜大 干 1.2,不应大干 1.5),因 Y 向扭转位移比大干 1.2,故结构计算需考虑双向地震。

4、构件设计结果

查看各层配筋简图,可以看出,构件基本无超筋情况,满足相关规范设计要求;只 有极个别框架柱、框架梁配筋超限,单独进行加强即可,不影响整体结果。

地上一层配筋简图

地上二层配筋简图

可以查看屈曲约束支撑的强度计算应力比结果,以地上一层的 BRB 应力比简图为 例,见下图,可见 BRB 大部分应力比超过 1,表示中震下大部分 BRB 内力已超过屈服 力,进入屈服阶段,BRB 应力比越大,代表进入屈服的程度越大。

5、有效刚度和阻尼

有控模型反应谱法计算的阻尼比在 wzq 文本文件中查看,反应谱计算的等效刚度 来自反应谱迭代结果。在"设计结果"的"构件编号"菜单中的减震器参数中可以查看 阻尼器反应谱迭代计算出的等效刚度及等效阻尼。

以地上一层为例,构件编号菜单下减震器参数会列出每一个屈曲约束支撑由反应谱 迭代得到的等效刚度和等效阻尼系数,每个阻尼器均根据自身的本构曲线和阻尼器的相 对变形计算而来,具体数值都不相同,对于同一类型的阻尼器,等效刚度越小,代表阻 尼器进入屈服的程度越大。这表明屈曲约束支撑在中震下均已进入屈服阶段。

而等效阻尼系数最终体现为反应谱计算后的阻尼比上,在反应谱计算结果中我们已 经查看了 wzq 文本文件中输出的结构阻尼比,这里给出的阻尼系数数值相当可观,代 表 BRB 附加给了主体结构一定数值的阻尼比,结构阻尼比增加,一定程度上降低了结 构的地震作用;可以看出,中震下 BRB 的反应与小震下 BRB 保持弹性、有效刚度为初 始刚度、有效阻尼为0的情况是不同的,中震下阻尼器多已屈服耗能,刚度退化,同时 给结构提供一定量值的附加阻尼比;金属屈服型阻尼器等其他位移型阻尼器规律相同。

如果不满足整体指标或者配筋等规范要求,需调整方案,重新调整阻尼器布置,重 复执行第二~五步骤。如果柱构件配筋超限时,一般可考虑换成型钢混凝土柱。此处不 详细介绍。

六、有控模型大震弹塑性时程分析

本小节内容与第五节中的第七小节类同,不再赘述。

第七章 常见问题

一、建模

1、建模时减震构件用什么构件来建立

减震构件也可以用斜杆、两点约束、单点约束方式建立。建议用斜杆来建立。好处 是,不同的型号的减震器可以用不同尺寸斜杆建立,直观方便,其非线性属性中的1、 2、3轴也非常明确,例如1轴就是沿斜杆方向。如果是 BRB 的话,程序还会计算其强 度。

2、连梁阻尼器建模方式

连梁阻尼器可以采用如下方式建模,注意斜杆建立时1端和2端在同一水平位置,

在特殊构件定义中将斜杆定义成塑性单元,并设定相关参数。

3、墙间剪切阻尼器建模方式

这种剪切型阻尼器安装在每层墙的中间部位,YJK 不能在同一直线上布置两道直墙, 但可在同一直线上同时布置斜墙和直墙。此时可以对下段墙按直墙输入,但墙上左右节 点高度输入墙在层中间的高度,上段墙按斜墙输入(其上下偏心相同,所以实际仍是直 墙),其底标高输入缝隙上的高度。布置完墙体后,在中间缝隙的上下节点间布置斜杆, 并在计算前处理的特殊支撑菜单下把斜杆设置为剪切型阻尼器。

例如层高 4m,上下墙高均为 1800mm,阻尼器高度为 400mm;

首先用斜墙功能建立下端墙体,下端墙体顶标高为-2200mm(相对于层高),设 置如下:

反応		ievix			
会墙线	式 绘梁线 斜墙 拾取 → 布置	定义 导入 刷 截面			
۲ ا	墙布置参数	×			
	上端偏轴距离 (mm) 墙底高 (mm)	0			
	墙顶高1 (mm) 墙顶高2 (mm)	1800			
	下端偏轴距离(mm) 下起点外扩距离(mm)	0			
_	下终点外扩距离(mm) ◎ 光标 ◎ 轴线 ◎ 副	0 罰口 ◎ 围区	z		

然后用"墙"功能建立上端墙体,墙底高设置为相对于层底标高的值,此例为 2200mm,如图

B H B A A H B B	e <mark>x</mark>	
a <mark>#四格 构件布置</mark> 楼板布	置 荷载输入 自	1定义工况
³ 🖸 🗖 🖉 🌈	* 🧷 🗔 🛃	🧳 🖪 (
墙 墙洞 斜杆 次梁 绘墙	浅 绘梁线 斜墙 拾取	定义 导入
	▼ 布置	刷截面
输入		
修改 删除 显示 清理	坦布置参数	
形状参数	偏轴距离 (mm)	0
普通墙 200	墙底高 (mm)	2200
	墙顶高1(mm)	0
	墙顶高2(mm)	0
	● 光标 ◎ 轴线 ◎ 番	

接下来用斜杆建立阻尼器构件,设置1端、2端标高为距离层底标高值,本例为 1800mm、2200mm。

最后在特殊支撑中将斜杆设置为剪切型阻尼器参数。

推荐的建模方式:在建立了上下两片墙后,在墙中间对应的轴线位置增加节点,布 置一个斜杆用来模拟连接单元,此方法更方便后续查询剪切型阻尼器的滞回曲线。

4、用斜撑模拟剪切型阻尼器,一个阻尼器要用几根斜撑?

按照《YJK 减震结构设计》(2016 年 11 月版)上的截图,似乎应该要用两根斜撑

来模拟一个阻尼器,那么这两个斜撑上的参数该如何设定?如果用墙,R3 需设置较大 刚度吗?同一位置设墙和斜墙,上面斜墙还是下面斜墙对计算有没有影响?数检时提示 墙下悬空,对计算结果有影响吗?

回复:在同一个位置上有墙和斜墙,计算时真实考虑这两片墙的存在。模型数检提 示上面墙下悬空,这个是给用户一个提示,没有错误,可以正常进行后续计算。

对于软件来说,建立一根或者两根软件都支持。当建立两个时,有可能这两个不同 时屈服,有可能一个屈服一个屈服,耗能情况有可能不同,和真实情况就会有较大误差。 所以我还是建议建立一个来模拟,建议放在中间位置,并给其设置上相应的抗弯刚度。

如果用 YJK 的减震分析,在点了"直接积分法时程中计算有效刚度和阻尼"后,是 不是在前面总信息里就不用增加附加阻尼比了?

回复:是的,前面就填写结构原有阻尼比,比如混凝土结构 5%,钢结构 2%。 5、粘滞阳尼器的常见的安装方式有哪些?

二、连接单元定义

1、减震器非线性参数说明

(1) 屈曲约束支撑(塑性单元 Wen)

屈曲约束支撑的非线性参数如下图所示,有刚度、屈服力、屈服后刚度比、屈服指 数四个参数。意义如下:

四个参数的具体意义可以从上图曲线中看出,文字解释如下:

刚度:是指屈曲约束支撑的初始刚度及其卸载时的刚度。

屈服力:是指使得屈曲约束支撑达到屈服时,其所承担的力。其值与双线性模型曲

线拐点处的内力值一致。

屈服后刚度比:是指屈服后刚度与初始刚度的比值。

屈服指数:是 Wen 单元的一个参数,它表征构件由屈服前刚度过渡到屈服后刚度时的平滑处理程度,当屈服指数无限大时,不做平滑处理,此时 Wen 模型与双线性模型一致。当屈服指数越小时,平滑处理的程度就越高。

(2) 速度型阻尼器

速度型阻尼器的非线性参数包含三个,刚度 k、阻尼 c 和阻尼指数 a 。盈建科软件的速度型阻尼器采用 Maxwell 单元计算,如下图所示。

有 kl	有效刚度KE N/m, kN.m/r:	有效阻尼 adCE(kN.s/m	非线性)	刚度 K(kN/m)	阻尼 C(kN.s/m)	阻尼指数 exp	\geq
🗹 V1	0	0		80000	400	0.2	>
🗌 V2	0	0		0	0	0	<
□ 1/3	0	0		0	0	0	
🗌 R1	0	0		0	0	0	15
🗌 R2	0	0		0	0	0	
R 3	0	0		0	0	0	-

对于 Maxwell 单元,应注意其弹簧与阻尼是串联关系,而非并联关系。所以其弹簧 内力与阻尼内力相等,也与该单元的总内力相等。即:

$$F = kX_k = cV_c^{\hat{c}}$$

上式中,X_k为弹簧变形,V_c为阻尼两端的速度差。V_c对时间的积分与X_k之和为构 件两端的总变形。一般情况下用户用 Maxwell 单元模拟粘滞性阻尼器,所以往往希望其 刚度无限大(但实际不可能无限大,会造成数值困难,后文详述)。这样一来,其力学 表现基本接近于:

$$F = cV^{\partial}$$

式中, V 为整根构件两端的相对速度。从上式中我们可以看出, 阻尼系数 c 是一个

线性系数,对整个 F 轴有一个线性缩放的作用。指数系数 a 会影响曲线的凸凹性,在 a 为 1 时为直线。其中阻尼系数 C 的单位均为 $kN*(s/m)^{\alpha}$

2、减震器连接单元的局部坐标系

根据减震器的性质不同选择阻尼器、屈曲约束支撑、塑性单元等非线性连接单元, 非线性单元是由斜撑定位的,其局部坐标系分为两种情况。

(1) 若定位斜撑是平行于整体坐标 Z 轴的, 那么局部坐标与整体坐标的关系:

U1 = -Z, U2 = Y, U3 = X

(2) 若定位斜撑不平行于 Z 轴, 那么局部坐标系的计算方式为:

U1 = 斜撑轴向, U3 = U1 叉乘整体坐标 Z轴, U2 = U3 叉乘 U1

3、不同类型的减震器应选择的连接单元类型

对于速度相关型的应选择"maxwell"连接单元;位移相关型,如 BRB、剪切型阻 尼器等应选择"屈曲约束支撑"、或者塑性单元(WEN)。

4、屈曲约束支撑(BRB)的有效刚度、有效阻尼填写

对于屈曲约束支撑(塑性单元 Wen)来说,其有效刚度应是一个处于初始刚度和屈 服后刚度(屈服后刚度比与屈服前刚度的乘积)之间的值。

一般而言,随着地震波加速度的增大,屈曲约束支撑由于会更多的进入屈服段,会 导致其有效刚度有减小趋势,而同时其滞回曲线更加饱满,所以其有效阻尼应有增大的 趋势。但并无绝对的大小关系,也即并不一定有效刚度越小的屈曲约束支撑,有效阻尼 越大。

一般情况下,小震下 BRB 处于弹性状态,此时可以将有效刚度填写成初始刚度数 值,有效阻尼可以填 0;在中大震情况下,BRB 开始屈服耗能,其有效刚度填写成一个 处于初始刚度和屈服后刚度(屈服后刚度比与屈服前刚度的乘积)之间的值,此时有效 阻尼不应是 0。

187

5、根据厂家给定的 BRB 屈服承载力和屈服位移值,YJK 中的非线性刚度填 写?

YJK 连接单元参数中非线性的刚度即为初始刚度,可以按照厂家给定的参数来进行 手算填写:初始刚度=屈服承载力/屈服位移,注意单位。

6、程序直接积分法计算时是算 X、Y 两个方向地震时程,其计算有效刚度有 效阻尼时,是由哪个方向的地震时程算得。

对于未布置在地震波方向的屈曲约束支撑而言,比如某轴向型的屈曲约束支撑,沿 Y 向布置,当地震沿 X 向时,可能并不承担减震作用,基本相当于一根弹簧,有效刚度 与初始刚度一致。所以程序自动计算有效刚度和有效阻尼时,自动取主方向的结果。

未布置在地震波方向的阻尼器由于两端速度较小,也可能会表现出部分弹簧的特性, 尽管 K 值填得较大。所以程序自动计算速度型阻尼器有效刚度和有效阻尼时,与屈曲约 束支撑类似,取主方向的计算结果作为最终结果。

7、减震器在小震、中震和大震下的有效刚度和阻尼是不同的

减震器构件可以给结构提供刚度和阻尼,但是有效刚度和有效阻尼的确定一直以来 是一个难点,原因是相同规格的减震器,在同一结构中可能提供不同的刚度和阻尼,因 为减震器的有效刚度和有效阻尼与地震波,地震方向,地震波峰值加速度,安装位置, 局部方向(U1, U2, U3)均相关。

例如对于屈曲约束支撑而言,它在小震下接近弹性,在中震和大震下会有较多的吸 能减震的作用,所以其在小震、中震、大震下的有效刚度和有效阻尼均不一致。

8、直接积分法中计算参数中的下图阻尼比应该怎么填?

	振型A	振型B		
周期:	0.760026	0.233		
阻尼比:	0.05	0.05		
☑质量系数a	lfa	0.632731		
☑刚度系数b	eta	0.002838		

回复:这是瑞利阻尼参数,这里填写不考虑附加阻尼比的原阻尼比,例如混凝土结构就填 0.05,钢结构 0.02。

9、计算参数采用"能量法"和"强制解耦"的区别

参数中应选择"能量法"来算阻尼比,不能用"强制解耦"法。因为强制解耦法读取的是阻尼器的线性参数。而能量法读取非线性参数。如果采用"强制解耦"法,线性参数中有效刚度不能填 0,如果是粘滞阻尼器可以填一个比较小的数值,比如 10。如果填 0 则认为没有阻尼器,算不出减震效果来。

10、Kelvin 模型和参数的对应关系

Kelvin 模型可模拟黏弹性阻尼器,非液压固体材料等。为确保位移接近零,但速度 很大时计算不收敛引入的数值刚度,通常填写较大的数值。如果弹性时程 FNA 计算不 收敛可适当调小以确保计算稳定。串联刚度可取阻尼 c 的 2~3 个数量级,一般可以取 200 倍,以能收敛,能量平衡来判断。数值刚度对直接积分法计算不起作用。

1≓ k	引XX内门受KE N/m, kN. m/r:	相双阻尼 adCE(kN.s/m	1⊧3均1生)	的度 K(kN/m)	P日/已 C(kN.s/m)	PEJEJ首致 exp	致但的)是 (kN/m)		
0 U1	0	0	\checkmark	0	0	0	0		
]U2	0	0		0	0	0	0		
_ U3	0	0		0	0	0	0		
R1	0	0		0	0	0	0		
R2	0	0		0	0	0	0		
R3	0	0		0	0	0	0		
全	应用		tT II >		石油	÷	取消		

11、墙式阻尼器连接单元的耗能方向

沿 X 轴方向布置的阻尼器连接单元的耗能方向是 U3 方向,沿 y 轴方向布置的阻尼 器连接单元的耗能方向是 U2 方向

0					2 exp			k	cN/m, kN.m/r	adCE (kN. s/r	n)	K(kdN/n)	C (kN. s/m)	exp
×	0		0	0	0			🕅 V1	0	0		0	0	0
0	0		0	0	0			🔽 U2	0	0	V	500000	267	0.2
0	0	1	500000	267	0.2	N I		🕅 V3	0	0		0	0	0
0	0		0	0	0			🕅 R1	0	0		0	0	0
0	0		0	0	0			🕅 R2	0	0		0	0	0
0	0		0	0	0			🕅 R3	0	0		0	0	0
		0 0 0 0 0 0 0 0 0 0		0 7 0 0 7 0 7 00000 3 0 - 0 - 0 3 0 - 0 - 0 3 0 - 0 - 0	0 I 0 I 0 0 0 0 I 0 0 287 0 0 I 0 0 0 0 0 I 0 0 0 3 0 I 0 0 0	0 0 7 0 0 0 0 0 7 50000 267 0.2 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0	0 7 0 0 0 0 7 0 0 0 0 0 0 7 0 257 0.2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 7 0 0 0 0 7 50000 267 0.2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0	0 0	0 0 0 0 0 0	0 0	0 0 0 0 0 0 0 0 0 0 0 0 257 0

12、连梁剪切型阻尼器连接单元的耗能方向

若定位斜撑是不平行于整体坐标 Z 轴的,那么局部坐标与整体坐标的关系:

U1 = 斜撑轴向,U3=U1 叉乘整体坐标 Z 轴,U2=U3 叉乘 U1 剪切型阻尼器的耗能方向是 U2 方向

13、人字撑粘滞阻尼器的注意事项

人字撑中不定义连接属性的斜杆需定义为两端固接,对阻尼器赋予连接属性

模型7	苛載論 入	前处	理及计算	设计	结果	弹性时	握分析	直接	积分法时	屋 札	姜板及设备	辰动 于	页应力	砌体设计	; 基础	11设计	施工图
	53		1			A	3	t 🗊	🛱 🏑		C'h	0 Co	諭	Ī	9		
たま	特殊梁	特殊柱 特殊	朱文撑 特殊	場 板屋	- 四時 节点	二日 単の 単の 単の 単の 単の 単の 目的 目的 目前	臣 材料	作能	人防 删售	 全 复制	冬塔定义	楼层屋件	→□□	け重长度	温度荷载	活荷折减	生成数
校核	-	-	* *			等	及强度	设计	构件 🚽		-	-	-	-	-	-	及数
			水平转换	。角枝	ŧ,	两端固	€ [设置连封 	妾属性 。	杆端释放	z		风荷载	计算长度	温度荷载	活荷折减	4
			转换柱	。两	較接	本层固	· ·	修改连续	妾属性 。	删除释放	z						
			单拉杆	• E	較接	全楼回	要	• 删除连挂	安属性 。	空间属性	E		Λ				
			单压杆	• 下前	较接	定义连	接属性	。显示连	妾参数								1
				/	-	关	闭					1		•			
							/						a	~/			
		阻尼器		-	jž	即定义	无相关定	ex 🔹				1		$\lfloor T \rfloor$			
		有效刚度 (kN/m)	有效阻尼 (ksN. s/m)	非线性	· 刚度 (keN/m)	阻尼 QebN.s/m)	阻尼指	数				/					
	U1 💟	500	0	V	.250000	160	0.5				A			XI			8
	🕅 V2	0	0		0	0	0						/				
	🕅 V3	0	0		0	0	1				1						
	🕅 R1	0	0		0	0	0							ļ			
	E R2	0	0		0	0	0			/			[
	🕅 R3	0	0		0	0	0			. 1							
										X		- /		1			
									4								
															·		
									1	1	/	-	AR 15 4	and			
												1			-008 Ci 180 a	Ф:0. #	
									1	/	/	\sim					
									1	/			\searrow				
									7	3							
														\sim			

14、减震设计子结构需要定义关键构件或进行大震验算?

答:需要,与阻尼器相连接梁、柱子结构需要定义关键构件进行中震、大震复核验 算进行包络设计。

15、减震设计对《基于保持建筑正常使用功能的抗震技术导则》相关要求支 持吗?

答:4.2 及以后版本支持该导则,在隔震、减震参数页提供导则要求的中震设计方法,对于导则要求的楼面加速度要求,可以通过时程分析后的节点加速度来获取。软件 文本输出了各楼层质心最大加速度数值。

三、计算及结果查看

1、进行直接积分法计算其有效刚度、有效阻尼时,应选择什么样的地震波 计算结果更合理?

答: 建议生成一条和规范谱拟合的非常好的人工波。可以在"弹性时程"模块中的

"人工波生成"功能来生成。

2、在直接积分法计算时,竖向地震地震波要求

答:这个提示的已经很清楚了,所选的竖向波要和水平波的步长、起止时间、数据 点个数都要一致。否则会提示如下

YJKEP	
<u> </u>	所选地震波各分量的步长或者数据点个数不一样,请重新选波!
	确定

3、查看耗能曲线,还需要看每个耗能曲线包围的面积来算结构阻尼、减震 器等耗能量吗?

答:耗能曲线的竖轴坐标单位为 KJ,是能量单位,水平坐标是时间,您就看某个 时刻各耗能曲线数值就可以,无需看包围的面积。

4、子结构可在大震弹塑性计算结果配筋

在大震弹塑性模块中,可将子结构的梁柱等构件指定成"不屈服"项,程序会根据 大震弹塑性计算得到的内力进行配筋。考虑的为恒、活、地震组合下的设计配筋结果。

5、减震器的内力滞回曲线尖锐线较多,不够平滑,其有效刚度等值也不合 理

这是因为直接积分法或者动力弹塑性分析的积分步长有点长,建议将步长减小,例 如由 0.02s 减小到 0.001s,计算时间稍长,但结果更加合理。

6、反应谱计算完后,阻尼器上的剪力大于屈服剪力 10%多点,有什么办法 可以调整,让这两个力尽量接近,差值小于 5%。

回复: 实际上消能器其出力是可能要大于其屈服力的,只有大于屈服力才会屈服 才会产生滞回耗能,而屈服后还是有刚度的所以这是正常的。如果其出力小于屈服力说 明还一直在弹性阶段,没有耗能。 对于反应谱计算,也是有可能的,如果大于的较多想要减小一点时,可以试着减小 其有效刚度。同样的道理,其剪力只有大于其屈服剪力才说明其进入耗能状态。

7、从哪里查看减震器的最大出力、最大位移值?

通过连接单元的内力滞回曲线可以看到所需的最大出力、最大位移值,竖轴为作用 力(KN)、水平轴为位移值(m),如下图为一个 BRB 构件在小震下的内力滞回曲线, 点击纵轴或横轴再点曲线上某一点,则显示出来该点上的横竖坐标值,即出力值及位移 值,本例最大出力为 24.598kN,最大位移为 0.0026m。

第七章 常见问题

8、从哪里可以查看到读取的直接积分法得到的有效刚度和阻尼系数值

上部结构的计算参数中,地震信息-隔震减震中,"减隔震元件的有效刚度和有效 阻尼"选择 "自动采用弹性时程计算结果",然后再进行"生成数据+全部计算"

	地表住白、頂表式表		
約总体信息 ▶ 算控制信息	- 地炭信息 > 隔震孤震 	包络设计	
控制信息 刚度系数	隔震	大震计算模型 不屈服	弹性
二阶效应 分析求解参数	隔毒居居号	大震地震影响系数最大值	0.9
荷载信息 基本参数	隔震结构设计方法 分部设计 >	周期折减系数 1 特征周期	0.3
震信息	分部设计法	结构阻尼比(%)	
自定义影响系数曲线	调整后水平向减震系数(阝/屮) 1	◎ 全機統一	5
时域显式随机模拟法 地震作用放大系数	→ 计算中震非隔震模型		2
性能设计 性能句络设计	减震 减震结构设计方法 抗规小需法 >	型钢匠 5 混凝土	5
隔震減震	云南瑊震规程	连梁刚度折减系数	1
荷载信息	□第一类抗震设防目标 小震 ^α Max 0.04	中深附度放大糸数	1.5
件设计信息 构件设计信息 钢构件设计信息 (络设计 (络设计) (络设计) (约)	減掃震 0.25 耐力加阻尼比折減系数 1 素出預新記24系数 1	弾性 结构阻尼比(%) ● 全楼统一	5
材料変数 钢筋强度	反应谱计算方法	● 技術科区方 一 羽 御	5
?下室信息 「载组合	 实振型分解反应谱法 		1
组合系数 组合系数	減震隔震附加阻尼比算法 能量法 ~	连采刚度折珮糸数 由梁刚度前大 系数	1
自定义工况组合		考虑双向地震作用	1.0
定加四 武式	₩稀晨元は千月次期度和有次期度 ○ 采用輸入的等效线性属性 ○ 送代确定 ④ 自动采用弹性时程计算结果		

查看设计结果,在"构件编号"可以查看直接积分时程法计算得有效刚度和阻尼; 同样的,如果"减隔震元件的有效刚度和有效阻尼"选择其他选项,则计算完后也可以 在减震器参数中显示相应选项的有效刚度和有效阻尼值。

9、直接积分法计算参数中阻尼比应怎么填

阻尼比应填写不考虑阻尼器的附加阻尼的原结构阻尼比,例如混凝土结构填 0.05, 钢结构 0.02。

	振型A	振型B	
周期:	0.760026	0.233	
阻尼比:	0.05	0.05	
☑质量系数a	lfa	0.632731	
☑刚度系数b	eta	0.002838	

参考文献

《建筑抗震设计规范》GB 50011-2010

《建筑消能减震技术规程》JGJ 297-2013

《基于保持建筑正常使用功能的抗震技术导则》征求意见稿

云南省地标《建筑消能减震应用技术规程》DBJ 53/T-125-2021

《减隔震建筑结构设计指南与工程应用》 丁洁民,吴宏磊

《建筑结构消能减震设计与案例》 潘鹏 清华大学